

2 CROSSTALK The Journal of Defense Software Engineering January 2009

4
5

6

11

15

20

24

28

Announcing CrossTalk’s Co-Sponsor Team for 2009
Meet CrossTalk’s 2009 co-sponsors.

The 2009 CrossTalk Editorial Board
CrossTalk presents our valued board of article reviewers for 2009.

Production Planning for a Software Product Line
Learn how to formulate a production strategy, devise a method, and
compose a plan for a successful SPL approach.
by Dr. Gary J. Chastek, Linda M. Northrop, and Dr. John D. McGregor

Experiences With Software Product Line Development
This article explores one companies’ move to an SPL, its SPL architecture,
and the lessons learned during the transition.
by Dr. Paul Jensen

Software Product Management
This article clarifies the role of a product manager and delineates the best
practices that have been successful in software product management.
by Dr. Christof Ebert

“Spending” Efficiency to Go Faster
Every part of an organization needs to work efficiently, and this article
explores improving total system performance to avoid bottlenecks.
by Dr. Alistair Cockburn

Software Process Improvement Implementation: Avoiding
Critical Barriers
This article identifies seven critical barriers to successful software process
improvement implementation and provides guidelines to avoid each barrier.
by Dr. Mahmood Niazi

Three Encouraging Developments in Software Management
While some software managers are falling back on forced ranking and
incentives to improve productivity, Derby examines the processes and
benefits of three long-term solutions.
by Esther Derby

PPolicies,olicies, NeNews,ws, andand UpdatesUpdates

SoftwarSoftwaree EngineeringEngineering TTechnoloechnologgyy

EngineeringEngineering fforor PrProductionoduction

3
10
14
30

31

DeparDepar tmentstments

From the Sponsor

Web Sites

Coming Events

Letters to the Editor
SSTC 2009

BackTalk

CrossTalk
OSD (AT&L)

NAVAIR

309 SMXG

DHS

MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

PUBLISHING COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kristen Baldwin

Joan Johnson

Karl Rogers

Joe Jarzombek

Brent Baxter

Kasey Thompson

Drew Brown

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
stsc.customerservice@
hill.af.mil
www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Office of the
Secretary of Defense (OSD) Acquisition, Technology
and Logistics (AT&L); U.S. Navy (USN); U.S.Air Force
(USAF); and the U.S. Department of Homeland
Security (DHS). OSD (AT&L) co-sponsor: Software
Engineering and System Assurance. USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor:
Ogden-ALC 309 SMXG. DHS co-sponsor: National
Cyber Security Division in the National Protection
and Programs Directorate.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 19.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community. Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Published
articles remain the property of the authors and may be
submitted to other publications. Security agency releas-
es, clearances, and public affairs office approvals are the
sole responsibility of the author and their organizations.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

OpenOpen FForumorum

January 2009 www.stsc.hill.af.mil 3

From the Sponsor

Software architecture is gaining traction within the DoD acquisition community as a
viable and necessary part of the acquisition and development process. Software

product lines (SPLs), when integrated through a systematic approach, are the penulti-
mate expression of sound software architectural technique. The ability to satisfy a wide
array of needs with a single, configurable product is extremely powerful.

SPLs can save taxpayer money, quickly adopt next-generation technology, and turn
a software support activity into its own program management entity. SPLs also have

the ability to cross service and national borders, eliminate vendor-proprietary, stove-piped soft-
ware solutions, and quickly adapt to new technology.

While some practitioners, developers, and managers see multiple benefits in this overarching
approach, others may feel threatened. The basic question of how to retain technical and fiscal
control of all aspects of their systems, while protecting the bottom line, is important. And can
a project manager truly rely on this approach without threatening core capability or leaving their
technology behind?

These concerns present us practitioners with many challenges. We must build trust with pro-
gram managers, proving over and over that their needs take a back seat to no one, and their dol-
lars are well and properly spent. We must demonstrate that their trust buys them more capabil-
ities and higher quality than their original dollars could ever have afforded. We must develop
incentive/reward approaches that encourage development and use of SPLs by developers,
acquirers, and vendors. We must enable vendors to explore advanced development of imple-
mentations that propose and meet future needs, and empower them to participate in the matu-
ration and expansion of the SPL’s architecture and market.

The real issue is that every challenge must be met, and met concurrently. This means chang-
ing the acquisition culture so that SPLs and other software production efficiencies are the expec-
tation, not the exception. In turn, the public gets the most for their hard-earned taxes, and the
warfighter gets the highest quality, best of breed software capability possible.

No single one of these challenges is insurmountable. There are examples of SPLs having
some success within the DoD, such as with the Tactical Control System, the Portable Flight
Planning System, and the Joint Mission Planning System.

The articles in this issue of CrossTalk address an innovative look at a wide spectrum of
possibilities to consider when focusing on SPLs. In Production Planning for a Software Product Line,
Dr. Gary J. Chastek, Linda M. Northrop, and Dr. John D. McGregor present a three-step
approach to taking an organization from their SPL goals to a comprehensive production plan.
To better understand what project managers might face when transitioning to an SPL approach,
read Dr. Paul Jensen’s article, Experiences With Software Product Line Development, on the experi-
ences at Overwatch Systems during their move to an SPL. Dr. Christof Ebert’s article, Software
Product Management, outlines the role of a software product manager and provides software prod-
uct management best practices that will help in attaining market success.

There are also examinations of other ways to improve software production and overall effec-
tiveness. In “Spending” Efficiency to Go Faster, Dr. Alistair Cockburn shows how software devel-
opment projects can improve total system results by reducing the impact of “bottlenecks.”
Through interviews with practitioners, Dr. Mahmood Niazi identifies the critical barriers that
impede Software Process Improvement programs and provides guidelines to help avoid those
barriers in his article, Software Process Improvement Implementation: Avoiding Critical Barriers. And if
your software organization needs to change course, you’ll want to read Esther Derby’s article,
Three Encouraging Developments in Software Management, which examines the benefits of evidence-
based management, Lean principles, and Agile methods.

I know you will enjoy the valuable insights that this issue of CrossTalk brings to the
challenges and possibilities of transitioning to SPLs, as well as to other software practices.

Engineering for Production

David Curry
NAVAIR Co-Sponsor

4 CROSSTALK The Journal of Defense Software Engineering January 2009

Policies, News, and Updates

Kristen Baldwin, Office of the Secretary of
Defense – Acquisition,Technology and Logistics
Software Engineering and Systems Assurance is
the staff agent responsible for all matters relat-
ing to DoD software engineering, systems assur-
ance, and system of systems (SoS) engineering.
Organizational focus areas include policy, guid-

ance, human capital, acquisition program support, software
acquisition management and engineering, software and systems
engineering integration, SoS enablers and best practices, engi-
neering for system assurance, and government-industry collabo-
ration. See <www.acq.osd.mil/sse/ssa> for more information.

Joan Johnson, NAVAIR, Systems Engineering
Department – Director, Software Engineering
The Naval Air Systems Command (NAVAIR) has
three Strategic Priorities through which it pro-
duces tangible, external results for the Sailor and
the Marine. First are its People that we develop
and provide the tools, infrastructure, and process-

es needed to do their work effectively. Next is Current Readiness
that delivers NAVAL aviation units ready for tasking with the right
capability, at the right time, and the right cost. Finally is Future
Capability in the delivery of new aircraft, weapons, and systems on
time and within budget that meets Fleet needs and provides a
technological edge over our adversaries. See <www.navair.navy.
mil> for more information.

Karl Rogers, 309 SMXG Acting Director
The 309th Software Maintenance Group at the
Ogden-Air Logistics Center is a recognized
world leader in cradle-to-grave systems support,
encompassing hardware engineering, software
engineering, systems engineering, data manage-
ment, consulting, and much more. The division

is a Software Engineering Institute Software Capability Maturity
Model® (CMM®) Integration Level 5 organization with Team
Software ProcessSM engineers. Their accreditations also include
AS 9100 and ISO 9000. See <www.mas.hill.af.mil> for more
information.

Joe Jarzombek, Department of Homeland
Security – Director of Software Assurance
The DHS National Cyber Security Division
serves as a focal point for software assurance
(SwA), facilitating national public-private efforts
to promulgate best practices and methodologies
that promote integrity, security, and reliability in

software development and acquisition. Collaborative efforts of
the SwA community have produced several publicly available
online resources. For more information, see the Build Security In
Web site <https://buildsecurityin.us-cert.gov> and the SwA
Community Resources and Information Clearinghouse <https://
buildsecurityin.us-cert.gov/swa> to provide coverage of topics
relevant to the broader stakeholder community.

Announcing CrossTalk’s Co-Sponsor Team for 2009
Kasey Thompson

CrossTalk

® Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

SM Team Software Process are service marks of Carnegie Mellon University.

First of all, I would like to once again express sincere thanks to the 2008 CrossTalk co-sponsors. Simply put,
CrossTalk would not exist without them and their generous financial support. As Publisher, I receive countless kudos—
via e-mail and the phone—expressing appreciation for an article or issue focus that contributed to individual or organizational
success. These compliments really belong to the co-sponsors, who spark countless themes and help bring us the best authors in
defense software engineering. Likewise, it is my pleasure to introduce CrossTalk’s 2009 co-sponsor team and offer pro-
found gratitude for their continued support and commitment to this journal. I know firsthand of their vision, caring, and dedi-
cation to their industry and it is manifested through support of CrossTalk. Each co-sponsor and their organization will
assist our staff by lending us their inexhaustible experience in engineering, systems, security, acquisition, tools, processes, models,
infrastructure, people, and of course, software. Co-sponsor team members are identified in this section with a description of their
organization. Please look for their contributions each month in our From the Sponsor column, found on page 3. Their organi-
zations will also be highlighted on the back cover of each issue of CrossTalk.

Want to Become a Co-Sponsor?

CCrroossssTTaallkk co-sponsors enjoy many benefits such as
inclusion of a page-long co-sponsor’s note, placement of their
organization’s logo on the back cover for 12 issues, placement
of the Director’s name and organization on each issues’ mast-
head, special sponsorship references in various issues, the abil-
ity to provide authors from within their community in regard to
their sponsored issue, and online placement on the CCrroossss--
TTaallkk Web site.

CCrroossssTTaallkk co-sponsors are also invited each year to
provide direction for future CCrroossssTTaallkk themes and feed-
back from the software defense community at large. Co-spon-
sors are also invited to participate in an annual meeting held
during the Systems and Software Technology Conference to
discuss emerging needs, trends, difficulties, and opportunities
which CCrroossssTTaallkk may address in an effort to best serve
its readers.

CCrroossssTTaallkk welcomes queries regarding potential spon-
sorship throughout the year. For more information about
becoming a CCrroossssTTaallkk co-sponsor, please contact Kasey
Thompson at (801) 586-1037 or <kasey.thompson@hill.af.mil>.

January 2009 www.stsc.hill.af.mil 5

Abba Consulting
Brigham Young University
Electronic Systems Center Engineering Directorate
Software Technology Support Center
OO-ALC Engineering Directorate
U.S. Navy
HQ Air Force Special Operations Command
309th Software Maintenance Group
Humans and Technology
Retired (formerly with Microsoft)
The AEgis Technologies Group, Inc.
309th Software Maintenance Group
Software Technology Support Center
309th Software Maintenance Group
Software Engineering Institute
Auburn University
538th Aircraft Sustainment Group
Software Technology Support Center
Defense Information Systems Agency
Air Force Institute of Technology
Software Technology Support Center
Software Consultants, Inc.
Priority Technologies, Inc.
Software Technology Support Center
Raytheon – Network Centric Systems
Software Technology Support Center
U.S. Marine Corps
Northrop Grumman
309th Software Maintenance Group
Software Technology Support Center
Software Engineering Institute
PEM Systems
Raytheon Integrated Defense Systems
Software Technology Support Center
Science Applications International Corporation
L-3 Communications, Inc.
Army PEO Simulation, Training and Instrumentation
500 CBSS/GBLA (Atmospheric Early Warning System)
Arrowpoint Solutions, Inc.
SabiOso
309th Software Maintenance Group
Arrowpoint Solutions, Inc.
Robbins Gioia LLC
Software Technology Support Center
Software Technology Support Center
309th Software Maintenance Group
Army Research, Development, and Engineering Control
Lockheed Martin Integrated Systems and Solutions
Charles Stark Draper Laboratory
309th Software Maintenance Group
Software Technology Support Center
Software Engineering Institute

The 2009 CrossTalk Editorial Board
Kasey Thompson

CrossTalk

CrossTalk proudly presents the 2009 CrossTalk Editorial Board. Each article submitted to CrossTalk is re-
viewed by two technical reviewers from the list below. Their insights improve the readability and usefulness of the articles that are
published in CrossTalk. Most reviewers listed have graciously offered their own time to support CrossTalk’s technical
review process. We give a very special thanks to all those participating in our 2009 CrossTalk Editorial Board.

Wayne Abba
COL Ken Alford, Ph.D.

Bruce Allgood
Brent Baxter
Jim Belford

Gene Bingue
Lt. Col. Christopher A. Bohn, Ph.D.

Mark Cain
Dr. Alistair Cockburn

Richard Conn
Dr. David A. Cook

Rushby Craig
Les Dupaix

Monika Fast
Robert W. Ferguson

Dr. John A. “Drew” Hamilton Jr.
Gary Hebert

Tony Henderson
Lt. Col. Brian Hermann, Ph.D.

Lt. Col. Marcus W. Hervey
Thayne Hill

George Jackelen, PMP
Deb Jacobs

Dr. Randall Jensen
Alan C. Jost
Daniel Keth

Paul Kimmerly
Theron Leishman

Glen L. Luke
Gabriel Mata

Jim McCurley
Paul McMahon

Dr. Max H. Miller
Mark Nielson

Mike Olsem
Glenn Palmer

Doug J. Parsons
Tim Perkins

Gary A. Petersen
Vern Phipps

David Putman
Kevin Richins
Gordon Sleve

Larry Smith
Elizabeth Starrett

Tracy Stauder
COL John “Buck” Surdu, Ph.D.

Dr. Will Tracz
Jim Van Buren
David R. Webb
Mark Woolsey
David Zubrow

6 CROSSTALK The Journal of Defense Software Engineering January 2009

The benefits of an effective production
system are well understood. For

example, in manufacturing, the Toyota
Production System (TPS) produces high-
quality, low-cost automobiles and is wide-
ly credited with providing Toyota with a
significant competitive advantage. The
TPS is based on a set of development
rules [1], two of which are of particular
relevance to SPLs:
• Rule 1 – How People Work. Tasks

are rigorously specified yet the overall
processes are highly flexible.

• Rule 2 – How People Connect. Cus-
tomers and suppliers are connected di-
rectly and unambiguously, with defects
and schedules handled rapidly.
Just as producing automobiles is

Toyota’s focus, producing software-inten-
sive products is the main business of an
SPL organization. An SPL is a set of soft-
ware-intensive systems sharing a common,
managed set of features that satisfy the
specific needs of a particular market seg-
ment or mission and that are developed
from a common set of core assets in a
prescribed way [2]. This definition is con-
sistent with the one traditionally given for
any product line. But it adds more, putting
constraints on the way in which the sys-
tems in an SPL are developed. Why?
Because substantial production economies
can be achieved when the systems in an
SPL are developed from a common set of
assets in a prescribed way, in contrast to
being developed separately, from scratch,
or in an arbitrary fashion. It is exactly
these production economies that make the
SPL approach succeed in ways that earlier
forms of software reuse failed.

Building a new product (system)
becomes more a matter of assembly or
generation than one of creation; the pre-
dominant activity is integration rather
than programming. For each SPL, there is
a production plan that specifies the exact
product-building approach. And software
components are not the only thing being

reused across products. Other core assets
include requirements, architecture, de-
signs, documentation, budgets and sched-
ules, tools, process definitions, perfor-
mance models, testing artifacts, and much
more.

The organizations that we have stud-
ied1 have achieved remarkable benefits that
are aligned with commonly held business
goals, including:
• Large-scale productivity gains.
• Decreased time-to-market.
• Increased product quality.
• Decreased product risk.
• Increased market agility.
• Increased customer satisfaction.
• More efficient use of human re-

sources.
• The ability to effect mass customiza-

tion.
• The ability to maintain market pres-

ence.
• The ability to sustain unprecedented

growth.
These benefits give organizations a

competitive advantage and are derived
from the reuse of the core assets in a
strategic and prescribed way.

Implied by the definition of an SPL
are two coordinated roles in product pro-
duction. The core asset developer creates
reusable artifacts that will be used to build
multiple products. The product developer
assembles products from these core
assets—not arbitrarily, but in a prescribed
way. In [3], the authors surveyed a number
of organizations and found that these two
roles are often embodied in separate
teams that are not co-located. The arti-
facts produced during production plan-
ning are intended to coordinate the inter-
actions of these two roles.

The core assets are designed to be
reused, and reused in particular ways that
accommodate the variation that is inher-
ent in separate products. Although the
product developers construct the prod-
ucts, they are constrained in what they can

do because of how the core assets are
designed. Production planning provides
the opportunity for technical planning on
how the core assets should be designed to
facilitate efficient product variation and
integration [4]. The production plan ulti-
mately describes how to use the core
assets to build products.

These described TPS rules illustrate
some of the implications of the SPL def-
inition for product production. In a prod-
uct line production system, the prescribed
way is intended to rigorously specify the
roles in the organization. This specifica-
tion is actually broken into pieces that cor-
respond to the individual core assets used
to build the products. Each asset is accom-
panied by a description of how to use the
asset in product building. This attached
process is used to populate portions of
the production process. As different prod-
ucts are defined and different assets are
selected for inclusion in the products, dif-
ferent attached processes are included in
the production plan and how people work is
changed.

In an SPL organization, the core asset
and product developers are connected by
a delivery process in which core assets are
made available to the product developers.
This is developed from a common set of
core assets from the SPL definition. An
explicit feedback mechanism allows the
product developers to inform the core
asset developers about any defects or to
request desired enhancements. This is a
realization of Rule 2 of the TPS.

In the following sections, we provide
an overview of our approach to produc-
tion planning, list several documented
production planning experiences in both
industry and the DoD, and describe a pro-
duction planning workshop we have used
with industrial and DoD customers. Due
to the size of the artifacts, readers should
examine the production planning artifacts
of the Software Engineering Institute’s
(SEI’s) Pedagogical Product Line [5]. This

Production Planning for a Software Product Line

Dr. John D. McGregor
Clemson University

The goal of using a software product line (SPL) approach is to predictably develop multiple software-intensive systems (products)
in an efficient, timely, and cost-effective manner that takes economic advantage of the features common to the products. Achieving
this goal requires more than reusable (core) assets. It requires production planning that formulates a production strategy, devises
a production method, and composes a production plan that is followed for each product. We present a three-step approach to pro-
duction planning that guides an organization from the goals for the SPL to a comprehensive production plan.

Engineering for Production

Dr. Gary J. Chastek and Linda M. Northrop
Software Engineering Institute

Production Planning for a Software Product Line

January 2009 www.stsc.hill.af.mil 7

example SPL provides an extensive set of
product line artifacts in addition to the
production plan.

Approach
Our production planning technique
involves three activities: context, prerequi-
sites for planning, and planning activities
[6]. Each activity produces an artifact that
plays a specific role in the production sys-
tem. We will describe the context in which
the activities are conducted, the prerequisite
actions that must occur prior to production
planning, and then detail each of the three
planning activities.

Context
Production planning occurs within the con-
text of the SPL, the product line organiza-
tion, and the narrower context defined by
the product and production constraints.
These constraints are identified during early
product line analysis activities.

Activities such as scoping and market
analysis identify production constraints.
The structure of the organization can also
impose constraints. The relationships
among the customers, program offices, and
contractors constrain production. These
constraints include required divisions in
process responsibilities brought on by the
geographic distribution of personnel and
legal divisions between the program office
and the contractor.

Required properties of the products
impose constraints. For example, the need
for DO-178B certification imposes the
requirement that the tools and processes
used to produce the core assets and prod-
ucts be approved for this level of quality.

Prerequisites for Planning
Production planning begins early in the
planning for the product line but it can only
be completed when certain prerequisites
have been met. The requirements for the
production system are captured in a set of
production scenarios. A production sce-
nario takes the form shown in Table 1.
Sufficient production scenarios are created
to cover the various ways in which products
will be produced.

Planning Activities
The planning activities form a logical
sequence that move planners from deter-
mining the goals of the production system
to identifying the specifics of the produc-
tion schedule for each product.

Defining the Production
Strategy
The production strategy is a high-level

statement of how the organization expects
to achieve the goals of the product line.
The breadth and longevity of a product
line requires a goal-driven approach to
keep the organization focused. The tech-
nique for defining the production strategy
begins with the business goals of the prod-
uct line organization.

The SEI What to Build pattern [2]
focuses on defining which products are
part of the product line, its scope, and
developing a business case that justifies
the investment in the product line. The
business case is predicated on the organi-
zation’s business goals and identifies the
factors that are critical to the success of
the product line.

We use Porter’s Five Forces Model [7],
illustrated in Figure 1, and the critical fac-
tors output from application of the What
to Build pattern, to identify the strategic
actions that will be the basis of the pro-

duction strategy.
The boxes represent the market forces

and the arrows represent threats and
power. For example, potential entrants
into a market represent a threat while buy-
ers use their bargaining power to obtain
discounts or improved products. Here we
provide a brief description of each force:
• Potential Entrants. How can we raise

the cost to others of entering the mar-
ket by the means we use to produce
the products? In an SPL context, this
usually results in a strategic action to
automate as much as possible, amor-
tizing automation costs over the set of
products. This in turn increases the
cost of entry for potential competi-
tors. A flexible production method can
also respond to the needs of cus-
tomers faster than product producers
who have not yet entered the market.

• Substitutes. How can we differentiate

Source of Stimulus Who or what is initiating product production.

Stimulus The event or action that initiates product development.

Environment The state of the production environment of the product line at
the time of this scenario (e.g., all core assets are completed
and available for use).

Artifact The production system artifact can be a product or a core
asset.

Response How the production system responds to the request to
produce a specific product. For example, how long will it take
to produce this product?

Response Measure The measure may be calendar days from purchase contract
to deployment, cost in dollars or days of effort, etc.

Industry
Competitors

Potential
Entrants

Substitutes

Suppliers Buyers

Bargaining
Power

Bargaining
Power

Threats

Threats

Industry
Competitors

Potential
Entrants

Substitutes

Suppliers Buyers

Bargaining
Power

Bargaining
Power

Threats

Threats

Product Constraints

Production Constraints

Production Strategy

Production
Method

Production Plan

Production Process

+ + +
+

Project Details

Table 1: Production Scenario

Source of Stimulus Who or what is initiating product production.

Stimulus The event or action that initiates product development.

Environment The state of the production environment of the product line at
the time of this scenario (e.g., all core assets are completed
and available for use).

Artifact The production system artifact can be a product or a core
asset.

Response How the production system responds to the request to
produce a specific product. For example, how long will it take
to produce this product?

Response Measure The measure may be calendar days from purchase contract
to deployment, cost in dollars or days of effort, etc.

Industry
Competitors

Potential
Entrants

Substitutes

Suppliers Buyers

Bargaining
Power

Bargaining
Power

Threats

Threats

Industry
Competitors

Potential
Entrants

Substitutes

Suppliers Buyers

Bargaining
Power

Bargaining
Power

Threats

Threats

Product Constraints

Production Constraints

Production Strategy

Production
Method

Production Plan

Production Process

+ + +
+

Project Details

Figure 1: Porter’s Five Forces Model

Engineering for Production

8 CROSSTALK The Journal of Defense Software Engineering January 2009

our product from the substitutes
through the means of production?
The economies of scale of the prod-
uct line support a strategic action to
lower prices while the economies of
scope support an increase in features
to resolve the threat of substitutes.

• Buyers. How can we better respond
to buyers’ requests through attributes
of the production process? One strat-
egy action is to adopt short iterations
that provide enhanced functionality
quickly. Another is to provide buyers
with access to the status of defect fixes
so they can track those that are impor-
tant to them.

• Suppliers. How can we lower the
prices we pay suppliers by the produc-
tion techniques we use? The use of
open source software is one strategic
action. Another is to take advantage of
the economies of scale of the product
line to negotiate lower license fees for
specific components.

• Industry Competitors. How can we
gain advantage over the competition
by different choices of production
techniques? One strategic action is
building multiple versions of products
simultaneously. By establishing collab-
orative production arrangements with
suppliers where we obtain early copies
of future versions of their compo-
nents, our products can be released
much sooner after the release of the
new components.
The strategy that results from this

activity links the business goals of the
product line to a first, high-level statement
about how products will be produced. The
strategy provides an essential input into
the development of the production meth-
od. A detailed description of production
strategy development can be found in [8].

The DoD context adds a layer to the
usual customer/supplier relationship. The
customer and program office each have
goals for the product line and some of
these goals can be achieved through the
appropriate production techniques. The
production strategy is ultimately the
responsibility of the contractor who will

build the product line, but it must encom-
pass the goals of the customer and pro-
gram office.

Engineering the Production
Method
The production method [9] bridges the gap
between the production strategy and pro-
duction plan to provide a comprehensive
view of the entire SPL development. While
the production method is intended to
describe how to produce a product, it also
defines constraints on how the core asset
developers can design their assets. The
method becomes the vehicle for coordina-
tion between the core asset and product
development teams.

The method encompasses the process-
es, tools, and models needed to complete-
ly describe a development effort. For
example, the production method, in
response to the production strategy, might
adopt an Agile process model for pro-
ductbuilding teams. The method would
describe the roles and tasks for customers
or customer surrogates and development
team members. The method would define
work products such as user stories, unit
tests, and a software architecture, and
assigns responsibility for their creation to
specific roles.

The scope of the method varies from
one organization to another. The method
incorporates the processes and associated
tools and models for building products,
but the method may be expanded to

include processes for specifying products
and for product deployment. In some
product line organizations, the production
method may also include management
activities related to estimating and sched-
uling production.

Development of the production
method usually begins either with the sin-
gle system development method that is in
use as the product line organization is
formed or with a standard software devel-
opment method. Method engineering
techniques [10] are used to elaborate that
method into the full production method
that addresses the scale and variability of
the product line.

Developing the Production Plan
The production plan (shown in Figure 2) is
the product builder’s guide. It prescribes
how products are produced from the core
assets. It includes a process to be used for
building products (the production process)
and lays out the project details to enable
execution and management of the process.
The production plan is structured around
the product building process defined in the
production method. Just like a product
specification, the production plan includes
variation points; these include the variation
points in the product specification as well
as points related to the potential variations
in the production system.

The production plan gives a step-by-step
description of how to build a product. The
initial description is high-level, but it is par-
ticularized as choices are made at variation
points and core assets are selected to imple-
ment those choices. Each core asset is
accompanied by an attached process. The
attached process for an asset is the user’s
guide for that asset. The attached process
solves the common software reuse problem
of the learning curve for a new asset. The
attached process for a core asset gives a
step-by-step process for using the asset and
should provide sufficiently detailed infor-
mation to combat any difficulties in under-
standing how the asset works. The attached
process for a selected asset is added into the
product’s production process when that
asset is selected to be used to build the prod-
uct. By making core asset selections in the
prescribed order and adding the attached
process for each asset as it is selected, a fully
instantiated plan is developed just in time to
guide the product developer [11, 12].

Production Planning Experiences
Our experience has shown the value of
production planning:
• A survey was conducted of SPL Hall

of Fame members to capture their
experiences with production planning.

Source of Stimulus Who or what is initiating product production.

Stimulus The event or action that initiates product development.

Environment The state of the production environment of the product line at
the time of this scenario (e.g., all core assets are completed
and available for use).

Artifact The production system artifact can be a product or a core
asset.

Response How the production system responds to the request to
produce a specific product. For example, how long will it take
to produce this product?

Response Measure The measure may be calendar days from purchase contract
to deployment, cost in dollars or days of effort, etc.

Industry
Competitors

Potential
Entrants

Substitutes

Suppliers Buyers

Bargaining
Power

Bargaining
Power

Threats

Threats

Industry
Competitors

Potential
Entrants

Substitutes

Suppliers Buyers

Bargaining
Power

Bargaining
Power

Threats

Threats

Product Constraints

Production Constraints

Production Strategy

Production
Method

Production Plan

Production Process

+ + +
+

Project Details

Figure 2: Production Plan

“The production method
bridges the gap between
the production strategy
and production plan to

provide a comprehensive
plan of the entire
SPL development.”

Production Planning for a Software Product Line

January 2009 www.stsc.hill.af.mil 9

The full results of that survey are
available in [3]. The most important
result (for the purposes of this article)
is that production planning was found
to have a positive effect on the success
of the product line. Organizations that
did not sufficiently focus on produc-
tion planning wished they had.
Cummins, Inc. included more robust
architecture and production planning
practices in its second generation
product line [13].

• Paul Jensen describes Overwatch’s
experience with production planning in
a DoD context [14]. This experience
illustrated the need to plan for produc-
tion as early as possible. An attempt to
change tools in the midst of core asset
development was difficult and resulted
in inadequate tool support.

• In [15], the authors describe a user guide
that is essentially a production plan at
Rolls Royce. The user’s guide, for the
core asset base, describes how to use
the core assets to build products. It
was built as a core asset and delivered
with the core asset base.

• In [16], the authors provide a produc-
tion planning technique that relies on
the feature model. Production plan-
ning was decomposed into planning
about how to include each feature in a
product. By maintaining this traceabili-
ty, the product line production plan is
more easily transformed into the prod-
uct-specific production plan. As fea-
tures are selected during product defin-
ition, the production plan is composed.
The SEI developed a Production

Planning Workshop [17] in response to
requests for assistance on initiating a pro-
duction planning capability. The work-
shop is an intensive planning session that
is intended to expedite an organization’s
planning, providing a two-day introduc-
tion to the production planning process.
Our experience with the introductory
workshop has shown us that these two
days are very useful in accelerating the
production planning exercise.

Summary
A robust production planning tech-
nique—such as the one we have de-
scribed—produces a production plan that
is actionable and evolvable. The organiza-
tion extracts production goals from the
overall product line goals, creates a pro-
duction strategy that resolves the compet-
itive forces through the means of produc-
tion, elaborates the strategy into a set of
mutually consistent processes, tools, and
models, and finally operationalizes the
method in a detailed production plan.

This sequence of successive refinements
ensures that the production plan contains
sufficient detail for core asset and product
builders to accomplish their tasks pre-
dictably and efficiently. The traceability
provided by this approach ensures that
changes to product line goals or the dis-
covery of additional production con-
straints can be propagated through the
artifacts promptly.

A production system does not come
free with reusable components, services,
or even a product line architecture. A pro-
duction plan is necessary. Developing and
maintaining an effective and efficient pro-
duction system is critical to the success of
a product line.u

References
1. TPS. “Toyota Production System

Terms.” Toyota Motor Manufacturing
Kentucky, Inc. 2008 <www.toyota
georgetown.com/terms.asp>.

2. Clements, Paul, and Linda Northrop.
Software Product Lines: Practices and
Patterns. Boston: Addison-Wesley
Publishers, 2002.

3. Chastek, Gary, Patrick Donohoe, and
John D. McGregor. “A Study of Prod-
uct Production in Software Product
Lines.” SEI, Carnegie Mellon Univer-
sity. Technical Note CMU/SEI-2004-
TN-012. Mar. 2004 <www.sei.cmu.
edu/pub/documents/04.reports/
pdf/04tn012.pdf>.

4. Northrop, Linda, and Paul Clements.
“A Framework for Software Product
Line Practice, Ver. 5.0.” SEI, Carnegie
Mellon University. 2007 <www.sei.
cmu.edu/productlines/framework.
html>.

5. SEI. “Arcade Game Maker – Pedago-
gical Product Line.” SEI, Carnegie
Mellon University. 2008 <www.sei.
cmu.edu/productlines/ppl/>.

6. Chastek, Gary, Patrick Donohoe, and
John D. McGregor. A Production
System for Software Product Lines.
Proc. of the 11th Annual Software
Product Line Conference. Kyoto,
Japan, 2007: 117-128.

7. Porter, Michael E. “Competitive Ad-
vantage: Creating and Sustaining Su-
perior Performance.” Free Press, 1998.

8. Chastek, Gary, and John D. McGregor.
“Formulation of a Production Strate-
gy for a Software Product Line.” SEI,
Carnegie Mellon University. Technical
Report CMU/SEI-2008-TN-023.

9. Chastek, Gary, Patrick Donohoe, and
John D. McGregor. “Applying Goal-
Driven Method Engineering to Pro-
duct Production in a Software Product
Line.” SEI, Carnegie Mellon Univer-

sity. Technical Report to appear 2009.
10. Henderson-Sellers, Brian. “Method

Engineering for OO Systems Devel-
opment.” Communications of the
ACM 46 (Oct. 2003): 73-78. <http://
portal.acm.org/citation.cfm?coll=GU
IDE&dl=GUIDE&id=944242>.

11. Chastek, Gary, and John D. McGregor.
“Guidelines for Developing a Product
Line Production Plan.” SEI, Carnegie
Mellon University. Technical Report
CMU/SEI-2002-TR-006. June 2002
<www.sei.cmu.edu/pub/documents/
02.reports/pdf/02tr006.pdf>.

12. Chastek, Gary, Paul Donohoe, and
John D. McGregor. “Product Line
Production Planning for the Home
Integration System Example.” SEI,
Carnegie Mellon University. Technical
Note CMU/ SEI-2002-TN-029. Sept.
2002 <www.sei.cmu.edu/pub/docu
ments/02.reports/pdf/02tn029.pdf>.

13. Dager, Jim. Nomination presentation
at Product Line Hall of Fame Session.
12th Annual Software Product Line
Conference. Limerick, Ireland, Sept.
2008.

14. Jensen, Paul. Experiences With
Product Line Development of Multi-
Discipline Analysis Software at Over-
watch Textron Systems. Proc. of the
11th Annual Software Product Line
Conference. Kyoto, Japan, 2007.

15. Habli, Ibrahim, Tim Kelly, and Ian
Hopkins. Challenges of Establishing a
Software Product Line for an Aero-
space Engine Monitoring System.
Proc. of the 11th Annual Software
Product Line Conference. Kyoto,
Japan, 2007.

16. Lee, Jaejoon, K.C. Kang, and Sajoong
Kim. A Feature-Based Approach to
Product Line Production Planning.
Proc. of the Third Software Product
Line Conference. Boston, 2004: 183-196.

17. SEI. Software Product Lines. “Pro-
duction Plans for Software Production
Lines.” 2008 <www.sei.cmu.edu/prod
uctlines/production_plan.html>.

Note
1. The SEI has published several detailed

case studies of successful product line
organizations and the benefits they
have enjoyed. You can find these case
studies in [2] and on the Web at
<www.sei.cmu.edu/productlines/spl_
case_studies.html>. You can also find
references to product line efforts at
<www.sei.cmu.edu/productlines/
plp_hof.html> and <www.sei.cmu.
edu/productlines/plp_catalog.html>.

Engineering for Production

10 CROSSTALK The Journal of Defense Software Engineering January 2009

About the Authors

Gary J. Chastek, Ph.D.,
is a senior member of
the technical staff at the
SEI in the SPL Initiative.
Before joining the SEI,
Chastek designed and

implemented Ada compilers. Chastek’s
current research interests include pro-
duction planning, variability manage-
ment, and the use of open source devel-
opment techniques in SPLs. He received
his doctorate in computer science from
the University of Pittsburgh in 1983.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213-2612
Phone: (412) 268-2826
E-mail: gjc@sei.cmu.edu

Linda M. Northrop is
director of the Research,
Technology, and System
Solutions Program at the
SEI, where she leads
work in software archi-

tecture, SPLs, model-based engineering,
integration of software-intensive sys-
tems, predictable software construction,
and ultra-large-scale systems. She is co-
author of “Software Product Lines:
Practices and Patterns” and “Ultra-
Large-Scale Systems: The Software
Challenge of the Future.”

SEI
4500 Fifth AVE
Pittsburgh, PA 15213-2612
Phone: (412) 268-7638
E-mail: lmn@sei.cmu.edu

John D. McGregor,
Ph.D., is an associate
professor of computer
science at Clemson Uni-
versity, a visiting scientist
at the SEI, and a partner

in Luminary Software, a software engi-
neering consulting firm. His research
interests include SPLs, model-driven de-
velopment, and component-based soft-
ware engineering. McGregor’s latest
book is “A Practical Guide to Testing
Object-Oriented Software.”

School of Computing
Clemson University
Clemson, SC 29634
Phone: (864) 656-5859
E-mail: johnmc@lumsoft.com

Software and Systems Process
Improvement Network (SPIN)
www.sei.cmu.edu/collaborating/spins
A SPIN is an organization of professionals in a given geograph-
ical area who are interested in software and systems process
improvement, and this Web site is the place to sign up. Joining
a SPIN recognizes a commitment and loyalty to improving the
state of software and systems engineering, as well as placing one
in contact with a network of experts within their community. It
is a practical forum for the interchange of ideas, information,
and mutual support. Each regional SPIN is slightly different,
based on the vision of the founders and the needs of the com-
munity. SPINs are made up of professionals from all sectors—
industry, government, and academia (including students)—and
include defense contractors, professional organizations, and
independent consultants.

Software Product Lines (SPLs)
www.softwareproductlines.com
Devoted to the community of software engineers and managers
interested in using SPL approaches to develop their software,
the goal of this site is to provide software developers, product
managers, and development managers with practical informa-
tion on SPL issues, ranging from introductory concepts to
advanced techniques. Learn about SPL concepts, the first steps
for using SPL approaches, the benefits that may help convince
bosses to use SPL, success stories, expert perspectives, and
resources to use for learning more about SPL.

The Goldratt Institute
www.goldratt.com
What should an organization do when confronted with low
overall performance results, difficulties securing or maintaining

a strategic advantage in the marketplace, financial hardships,
seemingly constant firefighting, poor customer service, and
chronic conflicts between people? Utilizing the Theory of
Constraints (TOC) may help. The Goldratt Institute, birth-
place of the TOC, is a leading provider of TOC expertise, devel-
opment, implementation, and education. Their approach
begins with the development of corporate strategy and fans out
to all operational aspects of a given organization, tightly inte-
grating the strengths of Lean Six Sigma into an overarching
TOC-based solution. Once the barriers that block parts of an
organization from working together as an integrated system are
removed, the result is significant and sustainable improvement
in each problem area. This Web site provides robust, customiz-
able processes, expert-level training and certification, technical
support, mentorship, training materials, and planning in sup-
port of all TOC practices.

Validating Java for Safety-Critical
Applications
http://javolution.org/doc/Man33955.pdf
With the real-time extensions, Java can now be used for safety-
critical systems. It is therefore imperative to ensure that virtual
machine implementations not only conform to the Real-Time
Specification for Java (RTSJ) but also that efficiency and pre-
dictability are up to a certain standard. In particular, if the over-
head incurred by RTSJ implementations are beyond a certain
threshold, they may not suitable for safety-critical systems. With
this in mind, the Web site outlines the development and main-
tenance of a test suite that addresses conformance as well as per-
formance, and proved to be extremely useful in the critical
process of selecting the Java Virtual Machine Platform.

WEB SITES

January 2009 www.stsc.hill.af.mil 11

Overwatch Systems focuses on the
development and fielding of multi-

discipline data analysis software systems.
Areas of expertise include data fusion, all-
source analysis, signal intelligence acquisi-
tion and analysis, sensor network technol-
ogy, and visualization. Starting in 2003 and
continuing through 2007, the company
transitioned to an SPL approach, produc-
ing the OIC product line, of which all new
applications and systems are members.
Multiple systems have been fielded as
members, including a Signal Intelligence
(SIGINT) collection and analysis system
and an all-source analysis system.

During the Overwatch Systems transi-
tion, the company desired more informa-
tion related to the application of SPL
practices in business environments similar
to our own: fulfilling government con-
tracts by delivering members of an SPL.
The goal of this article is to make such
information available so that introducing
this approach can be easier in the future.

Software Product Lines
As defined by the Software Engineering
Institute (SEI), an SPL is a set of soft-
ware-intensive systems sharing a com-
mon, managed set of features that satis-
fy the specific needs of a particular mis-
sion and that are developed from a com-
mon set of core assets in a prescribed
way [1]. In other words, an SPL consists
of a family of software systems that have
some common functionality and some
variable functionality. To take advantage
of the common functionality, reusable
assets (referred to as core assets) are
developed, which can be reused by dif-
ferent members of the family. Following
an SPL approach involves not only devel-
oping core assets but also focusing on
the systematic production and delivery of
the different member systems (or vari-
ants) of the SPL family.

OIC Background
In 2003, Overwatch Systems was in a
transition period. In previous years, a

large portion of the business was dedi-
cated to developing a large all-source
analysis system for a single customer.
This system consisted of approximately
10 million lines of code (LOC) and hun-
dreds of components. To produce solu-
tions for new customers, this large analy-
sis system was cloned, modified, and
extended to meet new requirements.
Often, this approach led to difficulties

caused by the complexity and dependen-
cies encountered while adapting a legacy
system to a new mission.

Simultaneously, Overwatch Systems
was beginning a large multi-year effort to
produce situation understanding and data
fusion capabilities for a second large cus-
tomer. Although rigid constraints were
imposed on the architecture and devel-
opment of this software, the company
made a commitment to create shared
value for both of the current customers
through the reuse of key components.

Transition to the SPL
Approach
Preliminary Steps
Based on a clear business case, the deci-
sion to transition to an SPL approach
was made by the CEO of the company.

From the beginning, the general manag-
er, chief architect, and vice president of
engineering were the champions of the
product line vision. Having strong sup-
port was critical to the successful SPL
creation and operation.

Transitioning affects all parts of a
business and introduces many risks.
Clements and Northrop [1] identify 29
business practice areas with activities that
are essential for product line success (e.g.,
architecture definition, process defini-
tion, funding, etc.). These practice areas
cover all aspects of the business includ-
ing software engineering, technical man-
agement, and organizational manage-
ment. During this preliminary transition,
a particular focus was put on the practice
areas of mining existing assets and train-
ing. Although these two practice areas
were critical to the transition, a lack of
focus on other practice areas, such as
architecture definition, funding, and
structuring the organization, caused
many problems that are discussed later in
this article.

To reduce the risks, an incremental
transition plan was created. This ap-
proach introduced product line concepts
to various practice areas incrementally
and relied on the creation of core assets
to be realized as part of ongoing devel-
opment activities. A specific customer
system was targeted to be the first mem-
ber of the SPL. This target provided
motivation by creating a sense of
urgency and forcing employees to focus
on the product line transition instead of
focusing only on normal daily issues.

The transition plan was derived from
the SPL Factory Pattern, which is a com-
posite pattern for an entire product line
organization [1]. Activities that took
place in this preliminary stage included
scope definition, market analysis, a tech-
nical probe, training on product line con-
cepts, and a determination of funding
and organizational models. The technical
probe was used to assess the current state
of the organization in the context of a

Experiences With Software Product Line Development

Overwatch Systems recently transitioned to a software product line (SPL) approach. Using its SPL, Overwatch Systems pro-
vides both software products and custom software system development in the domain of intelligence planning, collection, and
analysis to the U.S. DoD and intelligence community. This article describes the approach taken in Overwatch Systems’ tran-
sition, describes the product line architecture that is a key to the Overwatch Intelligence Center (OIC) SPL, and provides the
lessons learned during the transition.

Dr. Paul Jensen
Overwatch Systems

“Following an SPL
approach involves not
only developing core

assets but also focusing
on the systematic

production and delivery
of the different member

systems of the
SPL family.”

Engineering for Production

12 CROSSTALK The Journal of Defense Software Engineering January 2009

product line transition and to track the
progress of the transition over time. The
training consisted of seminars for
employees and required reading materi-
als, such as [1]. The seminars covered
product line concepts and how practice
areas would be affected by the transition.
The training was provided by the SEI’s
Paul Clements, the vice president of
engineering, and the chief architect. This
mixture of training provided both an
expert view on SPLs and a description of
product line practice areas specific to
Overwatch Systems.

Based on our experience, the devel-
opment of the funding model and orga-
nizational model are particularly impor-
tant for success with an SPL approach.
The organizational model that Over-
watch Systems initially implemented was
based on a division of domain engineer-
ing activity where reusable assets are cre-
ated and customer-specific engineering
activity in which the assets are assembled,
customized, and extended. This model,
as described in [2], appeared to be opti-
mal. A domain engineering group was
formed to produce reusable assets.
Multiple customer-specific engineering
groups would use those assets for cus-
tomer system development. The funding
for the domain engineering group was
initially derived from internal Overwatch
Systems funds. The plan was that these
funds, occasionally augmented with
funds from customer projects, would
fully support the employees required for
domain engineering.

Two major problems were encoun-
tered in operations that caused the com-
pany to eventually change this funding
and organizational model. The first prob-
lem was that difficulties were encoun-
tered in funding a domain engineering
group at a constant rate. Internal funds
were insufficient to pay for a majority of
the core asset development that was
required. Fluctuations in customer pro-
ject funding caused unmanageable fluc-
tuations in the size of the domain engi-
neering group. The second problem was
that experts in certain technical areas
were continuously pulled from the
domain engineering group to the cus-
tomer-specific engineering group to fill
critical gaps.

In the second year of the transition,
Overwatch Systems changed its organi-
zational and funding model in order to
address these problems. The company
transitioned to an organizational model
described as mixed responsibility [2], in
which customer-specific engineering
groups shared responsibility for develop-

ing reusable core assets. The lesson
learned from this change is to ensure,
through analysis and accurate estimation,
that the funding and organizational
model chosen for an SPL approach
aligns with the demands and characteris-
tics of one’s business.

Starting Out
The initial domain engineering group
consisted of eight engineers and would
grow to more than 25 before the organi-
zation transition. The domain engineer-
ing group’s mission was to create the nec-
essary number of core assets in a new
architecture that would allow the compa-
ny to begin making systems that are
members of the SPL.

The initial SPL architecture was
developed and focused primarily on the
dependencies between components in
the product line, emphasizing specific
rules that governed what types of depen-
dencies were allowed between product
line assets. The architecture neglected to
address issues related to the product
engineering or assembly aspects of the
products and did not define much of the
infrastructure that, as the company dis-
covered later, is needed to operate a
product line efficiently.

Drawing from a legacy software base-
line consisting of approximately 10 mil-
lion LOC, the core asset mining process
began. Several issues were encountered
and had to be overcome. The company
lacked experience in performing domain
analysis, which is the process of deter-

mining the commonality and variability
across all current customers and poten-
tial customers. Consequently, domain
analysis was not performed adequately
and the deciding factor in determining
what assets to mine and what variations
to implement became the requirements
of the first customer system to use the
product line. Domain analysis processes
had to be determined, tested, and applied
to overcome this issue.

The architecture and infrastructure
developed were not sufficiently designed
to support an SPL. Insufficient thought
was put into determining how the core
assets would be assembled and how the
architecture could exploit commonality.
As the core asset base expanded, many
cases were observed where commonality
was not being taken advantage of and
software components were not well inte-
grated. To address this problem, a
revised architecture was created later.

The company did not possess exper-
tise with variations in non-software core
assets (e.g., related artifacts such as
requirements and test procedures). The
mining process started before the
processes and tool modifications needed
to support non-software core assets were
executed. The result was an inadequate
representation of variation and com-
monality, and a lack of variation depen-
dency in these artifacts.

Despite these difficulties, approxi-
mately 4.5 million LOC were mined and
new software components were devel-
oped, resulting in approximately 200 soft-
ware core assets. These core assets pro-
vided a range of capabilities in the all-
source and SIGINT intelligence domains,
including data ingestion, management,
processing, fusion, as well as geospatial,
temporal, and relational visualization. In
2005, the first customer system was made
using the OIC’s SPL.

Course Correction
During the Starting Out phase of the tran-
sition, it became clear that although
products could be produced from the
product line, the architecture and infra-
structure would not be sufficient in the
long term. After a technical analysis, a
decision was made to implement a new
product line architecture.

The new architecture, called Viper,
focused on creating composite applica-
tions from product line assets. Com-
posite applications are formed by com-
bining functionality drawn from several
different sources within a service-orient-
ed architecture and packaging them
together into a single-user interface or

“The initial SPL
architecture was

developed and focused
primarily on the

dependencies between
components in the

product line, emphasizing
specific rules that

governed what types of
dependencies were

allowed between product
line assets.”

Experiences With Software Product Line Development

January 2009 www.stsc.hill.af.mil 13

work process. In the context of an SPL,
a composite application is a member of
the product line composed or assembled
from the reusable software assets.

Viper implements several aspects of
service-oriented architecture, including a
high degree of core asset decoupling.
The architecture introduced the defini-
tion and control of interfaces and asset
and data discovery. A common messag-
ing mechanism, or service bus, was intro-
duced to allow software core assets to
publish and subscribe to objects, events,
and interfaces. A common object model
was added to impose object commonali-
ty on all software core assets regardless
of their origin. A single-user interface
was introduced to allow for the assembly
of a system that can be presented to the
user as a single application instead of
numerous applications with different
user interfaces. The unified-user interface
also enabled an increase in the common-
ality for functionality such as with editing
data (i.e., a single data editor was used
instead of multiple data editors). Lastly,
the architecture improved product engi-
neering support by providing SPL-
attached processes via a Software
Development Kit (SDK). The SDK
enabled those performing the construc-
tion of product line systems to use
automation tools for certain aspects of
the system assembly process.

The Overwatch Intelligence
Center
The first version of the Viper architec-
ture and SDK were completed in 2007
and serves as the core of the OIC SPL.
All development relevant to the product
line—including legacy code mining, new
development, and third-party code inte-
gration—uses the Viper architecture.
Legacy components are being migrated
from the original product line architec-
ture to the Viper architecture.

In its current state, the OIC contains
core assets related to intelligence planning,
collection, analysis, visualization, and data
management. The specific analysis areas
addressed by the product line include
SIGINT, Human Intelligence, and data
fusion (e.g., data correlation, aggregation,
and threat estimation). These core assets
are designed to be deployed either in the
Viper product line architecture or integrat-
ed directly into a customer’s enterprise
architecture.

The product line consists of approxi-
mately 270 software core assets with a
corresponding number of associated
core asset artifacts. The 270 core assets

are composed of approximately 900
components and 4.7 million LOC. The
origin of the core assets include a legacy
code base, newly developed software,
and acquired third-party components.

Achievements and
Improvements
In spite of missteps at the inception of
the effort, there have been several
achievements and improvements real-
ized. Two licensed products have been
created as members of the product line:
an all-source analysis and a SIGINT
product. These products are pre-config-
ured collections of core assets that are
customized to individual customer speci-
fications.

The all-source analysis product pro-
vides data management, link analysis, text
extraction, and geospatial capabilities. The
first version of this product, based on the
original SPL architecture, was developed in
less than 90 days. The company estimated
that this improvement got products to-
market approximately 2.5 times quicker.

The SIGINT product provides col-
lection, analysis, and processing capabili-
ties. The product has been delivered,
with modifications and extensions, to
two customers thus far. Software reuse
between the two customers is approxi-
mately 70 percent. There has also been
interest from a government customer to
acquire these capabilities as an SPL
instead of as individual products.

More than 10 customer systems have
been completed that are members of the
OIC SPL. Software reuse (within these
deliveries) is estimated to range between
40 and 70 percent. The software that
implements the Viper architecture and
SDK have been sold to a U.S. govern-
ment customer and is serving as the basis
for integrating Overwatch Systems, gov-
ernment-developed, and other contractor
software. In 2007, the OIC was nominat-
ed for inclusion into the SEI’s SPL Hall
of Fame, which exists to acknowledge
excellence in the field and influence in
the software engineering community.
Metrics to measure other improvements,
such as product quality, system cost dif-
ferential, integration speed, and customer
satisfaction are not yet available, but
anecdotal improvements have been
noted in these areas as well.

Economics
The SEI provides an economic model,
called the Structure Intuitive Model for
Product Line Economics, that can be
used to determine if a product line

approach is economically positive for a
particular organization [3]. Typically, the
benefits outweigh the costs (that is, a
positive return on investment) of a prod-
uct line approach with the third system
built from an SPL. Using this as the eco-
nomic model, Overwatch Systems’ expe-
rience is in line with the typical return on
investment. From 2003 to 2007, Over-
watch Systems’ revenue nearly tripled. It
is believed by management that this
growth could not have been achieved
without the speed and reduced costs
enabled by an SPL approach.

Lessons Learned
During the transition, a number of
lessons were learned:
• Support of organization leader-

ship is critical. At many points dur-
ing the transition, if not for the sup-
port of senior management—both in
terms of funding and organization
direction—the effort would not have
succeeded. In the case of Overwatch
Systems, the general manager, chief
architect, and vice president of engi-
neering are product line champions.

• An architecture specifically de-
signed to support a product line is
essential. Overwatch Systems’ first
attempt at a product line architecture
was rooted in our legacy applications.
It failed to properly address certain
quality attributes such as modifiabili-
ty, configurability, and extensibility in
the architecture. These attributes were
later addressed with the Viper archi-
tecture. More infrastructure design
and development should have been
done before the mining of core assets
began. A proper architecture evalua-
tion, as described by the SEI’s
Architectural Trade-off Analysis Meth-
od, is strongly recommended to uncov-
er product line architecture deficien-
cies [4].

• It is important to address product
line requirements in support tools
and processes early in the effort.
Overwatch Systems attempted to
change these tools and processes
(e.g., requirements management) in
parallel with creating core assets. The
result was tools that didn’t meet
requirements, frustration for product
line users, and software artifacts that
didn’t optimally address commonality
and variation. Special focus should be
made on the requirements for these
tools, which are related to creating
and maintaining relationships be-
tween variation points manipulated in
each tool. One way to accomplish this

Engineering for Production

14 CROSSTALK The Journal of Defense Software Engineering January 2009

is to determine how the selection of a
variation point in requirements is
communicated to the related variation
point in test procedures.

• Early in the transition, determine
the process for domain analysis
that best fits your organization.
Overwatch Systems arrived at a fast,
lightweight process, centered on the
creation of a high-level architecture
artifact that can be performed in the
small amount of time that is typically
available in our projects. To deter-
mine our process, the company exam-
ined and used concepts from several
references including [5, 6, and 7].

• Put processes in place to perform
domain analysis activities as early
in the project life cycle as possible.
Overwatch Systems creates a domain
analysis document as early as the pro-
posal stage of a project and it evolves
during the project life cycle. This
approach ensures that all project par-
ticipants are in agreement with re-
spect to the project’s relationship to
the product line.

Conclusion
A product line approach to developing
software for government customers is
viable and holds tremendous potential for
shortening time-to-market and delivering
a better value proposition. Adopting a
product line approach impacts engineer-
ing, technical management, and organiza-
tional management aspects of a business
and can be adopted by a company like
Overwatch Systems in the span of a few
years. When executing a transition to a
product line approach, special attention
should be paid to the product line archi-
tecture, the tools and processes that must
be modified to support the product line,
and techniques related to domain analysis.

In spite of missteps during the transi-
tion to a product line approach, Over-
watch Systems has successfully produced
the OIC SPL. The company has created
and delivered multiple software systems
from its product line to multiple defense
organizations, allowing the government
to receive the benefits that a product line
approach promises, including decreased
development time and reduced costs
from planned reuse.u

References
1. Clements, Paul, and Linda Northrop.

Software Product Lines: Practices and
Patterns. SEI Series in Software Engi-
neering. Addison-Wesley Professional,
2001.

2. Bosch, Jan. Software Product Lines:

Organizational Alternatives. Proc. of
the 23rd International Conference on
Software Engineering. Toronto, 2001:
91-100.

3. Clements, Paul C., John D. McGregor,
and Sholom G. Cohen. “The Struc-
tured Intuitive Model for Product
Line Economics (SIMPLE).” SEI,
Carnegie Mellon University. Technical
Report CMU/SEI-2005-TR-003. Feb.
2005 <www.sei.cmu.edu/publications
/documents/05.reports/05tr003/05
tr003.html>.

4. Clements, Paul, Rick Kazman, and
Mark Klein. Evaluating Software Ar-
chitecture: Methods and Case Studies.
Addison-Wesley Professional, 2002.

5. Kang, Kyo C., et al. “Feature-Oriented
Domain Analysis Feasibility Study.”
SEI, Carnegie Mellon University,
1990. Technical Report CMU/SEI-
90-TR-021.

6. Cohen, Sholom G., et al. “Application
of Feature-Oriented Domain Analysis
to the Army Movement Control Do-
main.” SEI, Carnegie Mellon Univer-
sity. Technical Report CMU/SEI-91-
TR-28, ESD-91-TR-028. June 1992
<ftp://ftp.sei.cmu.edu/pub/docu
ments/91.reports/pdf/tr28.91.pdf>.

7. Gomaa, Hassan. Designing Software
Product Lines With UML. Addison-
Wesley Professional, 2004.

About the Author

Paul Jensen, Ph.D., is
the chief architect for
Overwatch Systems, Tac-
tical Operations. Over-
watch Systems makes
intelligence planning, col-

lection, analysis, and visualization soft-
ware for the DoD and other government
agencies. He has 14 years of experience
in designing and building complex soft-
ware systems. At Overwatch Systems,
Jensen has served as an architect for
numerous complex software-intensive
projects, led the adoption of an SPL
approach to development, and led the
adoption of product innovation process-
es. He has a doctorate in physics from
the University of Texas at Austin.

Overwatch Systems
P.O. Box 91269
Austin,TX 78709-1269
Phone: (512) 358-2600
E-mail: paul.jensen@overwatch.

textron.com

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

COMING EVENTS

March 2-5
25th Annual Test and Evaluation

National Conference
Atlantic City, NJ

www.ndia.org/meetings/9910

March 2-6
8th International Conference on Aspect-

Oriented Software Development
Charlottesville, VA

www.aosd.net/2009/

March 4-5
TechNet Tampa 2009

Tampa, FL
www.afcea.org/events/tampa/09/

Introduction.asp

March 22-27
2009 Spring Simulation

Multi-Conference

San Diego, CA
www.scs.org/confernc/

springsim/
springsim09/cfp/
springsim09.htm

March 23-26
SEPG 2009 North America

San Jose, CA
www.sei.cmu.edu/sepgna/2009/

April 20-23
21st Annual Systems and Software

Technology Conference

Salt Lake City, UT
www.sstc-online.org

January 2009 www.stsc.hill.af.mil 15

Imagine loggers in a forest. They work
hard and cut tree after tree. It is a huge

physical effort and their foreman drives
them hard to stay on schedule. He wants
to cut a certain number of trees per day
and provides the workers with all they
need to achieve this objective. Suddenly
the client shouts, “you cut down the
wrong trees!” Despite all the hard work of
the foreman and his team, they did not
manage to deliver the intended customer
expectation. Sound familiar? Indeed, this
is what I’ve observed with many software
products. Organizations are pushed to the
extreme to be ever more efficient and cre-
ate products at a low cost, but when it hits
the market and sales are lower than
expected or customers demand several
changes during the development process,
margins are dramatically reduced from
initial targets.

Successful product management
means delivering the right products at
the right time for the right markets.
Naturally, the success of a product
depends on many factors and stake-
holders. However, it makes a big differ-
ence when a person is empowered to
manage a product from inception to
market and evolution—and the same
person is held accountable for the
results. This is the product manager.

At Vector Consulting Services, we
have learned from experience with many
clients in different industries that success
comes from anticipating and meeting the
customer’s needs together with being on
time and on budget. Technical product
development—such as for automotive
components, communication solutions,
defense systems, or IT infrastructure—
traditionally focuses on the project per-
spective and operationally executing a set
of given constraints within the triangle of
content, budget, and time. Often, it
becomes clear too late that customer
needs were different from what is built.

Project execution can be rather eas-

ily improved by means of CMMI®.
Today, there are a lot of exciting results
from optimizing projects in terms of
cost and cycle time [1, 2]. However, the
software product management respon-
sibility and underlying processes remain
vague. I often see product definition,
road mapping, and marketing decou-
pled from the engineering project-relat-
ed processes, which creates deficiencies
and overheads such as heavy changes in
requirements and missed market oppor-
tunities. It is like the loggers: The pro-
ject runs well, but with the wrong
results.

While an organization can embark
on the general principles of product
management [3], not much specific
guidance is available for software prod-
uct management. This article will pro-
vide a small introduction and tutorial
on software product management.

What Is Software Product
Management?
Product management is the discipline
and business process governing a prod-
uct from its inception to the market or
customer delivery and service in order
to generate the largest possible value to
a business. A product is a deliverable
that has a value and provides an experi-
ence to its users. It can be a combina-
tion of systems, solutions, materials,
and services delivered. Product man-
agement provides leadership to activi-
ties such as portfolio management,

strategy definition, product marketing,
and product development.

Often, the roles of product manag-
er, project manager, and marketing
manager are unclear in their distinct
responsibilities. To successfully define,
engineer, produce, and deliver a prod-
uct, these three roles need to be clari-
fied [3, 4, 5]. Figure 1 provides an
overview of an archetypical product life
cycle and shows how different projects
integrate towards an end-to-end view of
the product. It highlights the differ-
ences between managing a project and
managing a product. The project is a
temporary endeavor undertaken to cre-
ate a product. The project manager
focuses on delivering one specific prod-
uct or release while meeting time, bud-
get, and quality requirements. The
product manager looks to the overall
market success and evolution of this
product together with its subsequent
releases, related services, etc.

To clearly assign responsibilities,
there should be three distinct manager-
ial roles:
• The product manager leads and

manages one or several products
from inception to phase-out in
order to maximize business value.
They work with marketing, sales,
engineering, finance, quality, manu-
facturing, and installation to make
the products a business success [3].
They have business responsibility
beyond the single project. They
determine what to make and how to

Software Product Management

It’s easy to confuse the disciplines of project manager and product manager. Simply put, the development of the product or
service falls to the project manager, while the market success of software and system products depends on the skills and com-
petence of the product manager. This article provides an overview of software product management and the role of a prod-
uct manager, and describes concrete practices that can boost an organization’s software product management and thus the suc-
cess rate of products in terms of predictability, quality, and efficiency.

Dr. Christof Ebert
Vector Consulting Services

-

Research Project Development Project Service Project

Strategy Concept
Market Entry

Concep

t

Concep

t

Market Entr

y

Development
Evolution

Product Management Scope
(end-to-end, value-driven, portfolio of projects, releases and services)

Strategy Concept
Market Entry

Development
Evolution

Unknown project
dependencies

Business case
not evaluated

Vague product vision
and strategy

Key stakeholders
not integrated

Needs not
understood

Conflicts of interest;
commitments not

maintained

Unexpected
dependencies

between components

Unclear
cost/benefit

Incoherent set
of features

Rework

Delays,
overruns

Scope
creep

Wrong
content

Upstream Root Causes Tangible ProblemsEarly Project Symptoms

Strategy

Leadership

Innovation
and Change

Teamwork,
Collaboration

Marketing

Self-
Management

Economic
Thinking and

Behaviors

Technology
Understanding

Communication,
Negotiation

Maturity/
Accountability/

Trust

SWOT*/
Portfolio
Analysis

Positioning
and Value

Proposition

Strategic
Planning and
Management

Business
Case

Product and
Technology

Roadmapping

Voice of
Customer

Understanding

Phase/Gate
Process

Project
Management

Product
Definition and
Requirement

Supplier
Management

Engineering
Management

Risk
Management

Marketing
Planning

Product
Launch

Service and
Support

Management

Service,
Partner, Sales
Management

Customer
Relationship
Management

Marketing
Mix

Optimization

C
o

m
p

et
en

ci
es

P
ro

d
u

ct
 M

an
ag

em
en

t

L

if
e-

C
yc

le

 P
ro

ce
ss

es

 P
h

as
e

* SWOT: Strengths, Weaknesses, Opportunities, and Threats

Figure 1: Software Product Management Spans the Entire Product Life Cycle

® The CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

Engineering for Production

16 CROSSTALK The Journal of Defense Software Engineering January 2009

produce it, and are accountable for
business success within an entire
portfolio. They approve the roadmap
and content and determine what and
how to innovate, and are responsible
for the entire value chain of a prod-
uct following the life cycle, asking:
What do we keep, what do we evolve,
and what do we stop?

• The project manager determines
how to best execute a project or
contract. They ensure that the spe-
cific project is executed as defined
and are accountable for business
and customer success within a con-
tract project. They manage the pro-
ject plan and its execution and ask:
How do we get all of this accom-
plished?

• The marketing manager determines
how to sell a product or service in
order to create a customer experi-
ence. They are accountable for mar-
ket and customer success and have a
profound understanding of cus-
tomer needs, market trends, sales
perspectives, and competitors. The
marketing manager communicates
the value proposition to sales and
customers, drives the sales plan and
execution, and asks: What markets
will we address?
One might argue that in many orga-

nizations, one or several of these roles
are laid out differently and might simply
be coordinating based on directions
received from management. While this
has certainly been observed, such orga-
nizations often encounter interface and
responsibility battles and have a lack of
ownership as a result. These three roles
are necessary and need to be empow-
ered—and held accountable for results.

This not only stimulates motivation,
but also facilitates faster and more
effective decision making in a company
[2, 3].

Over the years, Vector Consulting
Services has investigated root causes of
such insufficient product management
and its impacts on hundreds of techni-
cal products with different origins,
development paces, and sizes [1, 4].
Figure 2 provides an example of how
product management failures cause
rework, scope creep, and delays.
Insufficient product management typi-
cally lacks vision, has an unclear market
and business understanding, and does-
n’t involve the right stakeholders (see
the left side of Figure 2). This leads to
initial symptoms such as a conflict of
interest on priorities and contents and
incomplete requirements. From here,
it’s a vicious circle with changes that
necessitate rework, which in turn caus-
es delays, which in turn causes scope
creep—and so on. Poor product man-
agement causes insufficient project
planning, continuous changes in the
requirements and project scope, config-
uration problems, and defects. The
obvious (yet late) symptoms are more
delays and overall customer dissatisfac-
tion due to not keeping commitments
or not getting the product they expect
(the right side of Figure 2). Being late
with a product in its market has imme-
diate and tremendous business impacts
[6, 7, 8]. In the contract business, this
often means penalties and, in practical-
ly all markets, it reduces customer loyal-
ty and overall sales returns.

The tangible problems can’t be fixed
by pushing a button; instead, the
upstream root causes need to be fixed.

It would be fatalistic to just take it for
granted that requirements changes will
always cause delays or that business
cases are always wrong. Rather, an
empowered product manager acting
like an embedded CEO (and held
accountable for results) will try to fix
internal problems and adjust to external
constraints and needs—similar to a
CEO who cannot simply excuse low
performance with bad circumstances.
Having worked with different compa-
nies in a variety of industries on soft-
ware product management, we empha-
size what we call the 4+1 best practices
to optimize product management.

4+1 Product Management
Best Practices
Four software product management
best practices will improve the situa-
tion, if used together. These techniques
have been found to reliably improve
project performance. A “+1” practice is
added to highlight the need for person-
al competence growth.

1. Install an Effective Core Team
Often, different stakeholders have un-
aligned agendas that make the project
late and cause lots of overhead and
rework. The first thing to do is formal-
ly create a core team with the product,
marketing, project, and operations
managers for each product (release) and
make them fully accountable for the
success of a product. These people rep-
resent not only the major internal stake-
holders in product or solution develop-
ment, but also sufficiently represent
different external perspectives. The
core team leads the product develop-
ment in all its different dimensions.
They typically meet once a week to dis-
cuss all open issues, risks, and relevant
aspects of the product. Decisions are
taken and implemented by the respec-
tive function. I suggest announcing and
making this core team operational as
early as possible in the product life
cycle, but certainly when the product or
release is defined. The success factor is
to give this core team a clear mandate
to own the project. I have observed that
the most need for active support is in
the building of an effective core team
that agrees that they have to steer the
course together. Too often, we face silo
organizations in marketing, where
product management and engineering
don’t work together. In many cases, this
means the necessity is not only to build
teams, but also to train and coach
employees and to adjust annual targets

-

Research Project Development Project Service Project

Strategy Concept
Market Entry

Development
Evolution

Product Management Scope
(end-to-end, value-driven, portfolio of projects, releases and services)

Strategy Concept
Market Entry

Concep

t

Concep

t

Market Entr

y

Development
Evolution

Unknown project
dependencies

Business case
not evaluated

Vague product vision
and strategy

Key stakeholders
not integrated

Needs not
understood

Conflicts of interest;
commitments not

maintained

Unexpected
dependencies

between components

Unclear
cost/benefit

Incoherent set
of features

Rework

Delays,
overruns

Scope
creep

Wrong
content

Upstream Root Causes Tangible ProblemsEarly Project Symptoms

Strategy

Leadership

Innovation
and Change

Teamwork,
Collaboration

Marketing

Self-
Management

Economic
Thinking and

Behaviors

Technology
Understanding

Communication,
Negotiation

Maturity/
Accountability/

Trust

SWOT*/
Portfolio
Analysis

Positioning
and Value

Proposition

Strategic
Planning and
Management

Business
Case

Product and
Technology

Roadmapping

Voice of
Customer

Understanding

Phase/Gate
Process

Project
Management

Product
Definition and
Requirement

Supplier
Management

Engineering
Management

Risk
Management

Marketing
Planning

Product
Launch

Service and
Support

Management

Service,
Partner, Sales
Management

Customer
Relationship
Management

Marketing
Mix

Optimization

C
o

m
p

et
en

ci
es

P
ro

d
u

ct
 M

an
ag

em
en

t

L

if
e-

C
yc

le

 P
ro

ce
ss

es

 P
h

as
e

* SWOT: Strengths, Weaknesses, Opportunities, and Threats

Figure 2: The Results of Insufficient Product Management

Software Product Management

January 2009 www.stsc.hill.af.mil 17

and performance management. As we
often realize, culture changes when tar-
gets are adjusted.

2. Enforce the Product Life Cycle
Like the core teams, making a standard-
ized product life cycle mandatory for all
product releases (i.e., all engineering
projects) is essential. Most companies
today have such a life cycle defined, but
rarely use it as the pivotal tool to derive
and implement shared and committed
decisions. Too often, requirements
changes are agreed on in sales meetings
without checking feasibility, and techni-
cal decisions are made without consid-
ering business case and downstream
impacts. A useful product life cycle has
to acknowledge that requirements may
never be complete and may indeed be
in a continuum state. The product life
cycle should guide with clear criteria
(i.e., determining what is good enough
or stable enough). This implies that it is
sufficiently flexible to handle different
types of projects and constraints. This
is achieved with basic tailoring tech-
niques and guidance as to which ele-
ments are mandatory and which should
be adjusted to the specific environment.
To foster discipline and visibility, the
mandatory elements of gate reviews
(such as checklists or minutes) must be
explicit and auditable. To reduce over-
heads, I recommend using online work-
flow management, which operationally
embeds tools and measurements in the
product life cycle. Ease of execution
with such workflow automation will
facilitate reuse, data quality, and consis-
tency. With the current abundance of
workflow management systems, I sug-
gest evaluating potential solutions ver-
sus your own needs to simplify the
process.

3. Evaluate Needs and
Requirements
Requirements must be understood and
evaluated by the entire core team to
ensure that different perspectives are
considered. Each single requirement
must be justified to support the busi-
ness case and to allow management of
changes and priorities. With our clients,
we often found requirements simply
being collected, yielding lots of unneces-
sary features that added to complexi-
ty—but not to customer-perceived
value. In fact, almost half of all deliv-
ered features are rarely used and do not
provide any payback [1, 7]. If a product
is developed on such an unjustified
basis, it is in trouble because its require-

ments will continuously change. A
product (release) must address a need
and must have a strong business vision.
This vision (i.e., what will be different
with the release of the product) must
be coined into a sellable story. The
story then translates to business objec-
tives and major requirements. Good
product management first understands
the customer’s needs and business case,
and then develops the necessary fea-
tures. Requirements are a contract
mechanism for the project internally
and often for a client externally. They
must be documented in a structured
and disciplined way, allowing both tech-
nical as well as market and business
judgment. Their evaluation should
specifically look to completeness, con-

sistency, and understandability. Ask a
tester to write a test case before process-
ing the requirement. Ask the marketing
manager to check whether he or she can
sell the feature as described; this avoids
unrealistic or overly complex feature lists
that don’t address real needs. Require-
ments should not be overly detailed or
there is a risk of paralysis by analysis; deter-
mine what is good enough and ensure
that any further insight is adequately con-
sidered. After evaluation, requirements
are approved by the core team. Only
thereafter are the requirements formally
allocated to the project, and the engineer-
ing effort is spent. Requirements and
business objectives must be managed
(planned, prioritized, agreed, monitored)
throughout the life cycle to assure focus
[7, 8]: Have a project plan that is directly
linked with the requirements. Work pack-
ages within this project plan should show

the value they contribute with such links
to requirements. Following these direc-
tions allows an organization to both
focus on what matters and monitor the
earned value of the project from begin-
ning to end, as well as proactively manage
risks, such as effort being burned without
creating value. Also note that your
change management needs to be both
formal and disciplined, because most
issues I’ve seen in troubled projects result
from creeping requirements and insuffi-
cient impact analysis. To ease change
management, install traceability from
requirements upwards to the business
case and downwards to test cases.

4.Assure a Dependable Portfolio
Managing release roadmaps—and their
own portfolio as a mix of resources, pro-
jects, and services—must be the focus of
each product manager. Often, roadmaps
are not worth the paper they are printed
on due to continuous changes that result
in a lack of buy-in from sales, operations,
and service. Projects are started ad-hoc,
while necessary reviews and clean-ups in
portfolios rarely happen. With moving tar-
gets, sales has no guidance on how to
influence clients, and engineering decides
on its own which technologies to imple-
ment with what resources. The product
manager has to show leadership and
ensure dependable plans and decisions that
are effectively executed. Dependable
means that agreed milestones, contents, or
quality targets are maintained as commit-
ted unless a change is agreed on and doc-
umented. Be aware that, as a product man-
ager, each ad-hoc content or release
change will create the perception that your
portfolio is not managed well. Apply ade-
quate risk management techniques to
make your portfolio and commitments
dependable; as you may find, projects may
need more resources, suppliers could
deliver late, or technology won’t work as
expected. For instance, platform compo-
nents used by several products might use
resource buffers, while application devel-
opment applies the time-boxing tech-
nique. If there is a change to committed
milestones or contents within the portfo-
lio, it must be approved first by the core
team and, where necessary, by respective
steering boards and then documented and
communicated with rationales.

The “+1”: Evolve Your Product
Management
Just having these four software man-
agement practices distilled and process-
es agreed upon is not sufficient in order
to improve the product management

“Too often, requirements
changes are agreed

on in sales
meetings without

checking feasibility,
and technical decisions

are made
without considering
business case and

downstream impacts.”

Engineering for Production

18 CROSSTALK The Journal of Defense Software Engineering January 2009

culture. Often, I’ve seen organizations
where product managers complain
about a lack of empowerment and
remain in an observer role. The truth is
that they simply don’t have the right
competencies to be empowered as a
mini-business owner; this leads to the
wrong people in wrong positions. To
achieve a true culture change, I strongly
recommend competence building for all
product managers across an organiza-
tion. This means change management
and closely working with product man-
agers to help them grow. Such individu-
alized and focused competence manage-
ment strengthens individual product
managers and helps them achieve their
missions. The equation is simple:
Competence and leadership enforced
from the bottom up in each project
yields better products, which grows
motivation and improves the overall
performance.

Our software product management
framework was shaped by working with
hundreds of product managers world-
wide in different industries [4, 5].
Figure 3 shows the product manage-
ment framework in a simplified format.
The top shows a product life cycle as
most companies today have it formally
up and running. Processes are derived
from best practices and underline the
formal content of product manage-
ment in an organization. The middle
section of the figure shows the typical
processes that a product manager is

responsible for, or is at least heavily
involved with. Finally, what is derived
from these processes (shown on the
bottom of the figure) are the compe-
tency needs of an organization’s prod-
uct management. While there are over-
laps across companies, focus areas dif-
fer (e.g., a software service provider has
different focus areas in this framework
than an automotive supplier).

This being done, we can get back to
organizational change management and
working with each product manager to
identify their own strengths and weak-
nesses. The competencies are used as a
basis to provide individualized training
and coaching for closing gaps. With
good change management and coaching,
I’ve observed a strong motivational
push, and have seen (during the compe-
tency evolution process) the product
management community starting to take
shape: Incumbents had a role model
(who had been actively trained); an
increasing number of product managers
became interested in working more
methodologically, primarily because they
saw the success of other business units
and colleagues who had already started
implementing the necessary changes [4].

Product managers often ask what
they can do to deliver better results.
Here are 10 ways to personally grow as
a product manager:
1. Behave like an embedded CEO.
2. Drive your strategy and portfolio

from market and customer value.

3. Be enthusiastic about your product.
4. Have a profound understanding of

your markets, customers, and portfo-
lio.

5. Measure your contribution on sales
(top-line) and profits (bottom-line).

6. Periodically check assumptions such
as business cases.

7. Take risks and manage them.
8. Foster teamwork based on Lean

processes.
9. Insist on discipline and keeping

commitments.
10. Be professional in communication,

appearance, and behavior.
Having observed hundreds of indus-

try projects from domains such as small
software applications and services,
embedded systems to large communica-
tion and IT systems, I strongly suggest
applying the four software product man-
agement practices in parallel; they
depend on each other. Their combined
use will significantly reduce delays and
thus improve market performance.
These four practices are applicable in
different organizations and industries.
They are tangible and can be formally
introduced to projects during the launch
period, thus reducing the impact change
and allowing an organization to see the
growing benefits early in their projects.

The Business Value
Does better software product manage-
ment mean better business perfor-
mance? At Vector Consulting Services,
we have performed a root cause analysis
of hundreds of products that underper-
formed and found similar causes reap-
pearing. Root causes included business
cases that were never re-evaluated,
unbalanced portfolios that strangulate
new products, insufficient management
of new releases and service efforts, and
a lack of vision causing requirements to
continuously change. This is underlined
by observations such as in [6], which
indicates that the top 20 percent of
enterprises deliver 79 percent of new
products on-time, while the average
enterprise delivers only 51 percent of
on-time projects. The same holds true
for efficiency: We found that with a
requirements change rate beyond 20
percent in a project, productivity falls,
and as such, business performance [1].

Improved product management has
a profound positive impact on overall
business. For instance, strengthening the
product management role at Alcatel-
Lucent showed that duration (time to
market), schedule adherence, and han-
dover quality all improved in a sustain-

-

Research Project Development Project Service Project

Strategy Concept
Market Entry

Concep

t

Concep

t

Market Entr

y

Development
Evolution

Product Management Scope
(end-to-end, value-driven, portfolio of projects, releases and services)

Strategy Concept
Market Entry

Concep

t

Concep

t

Market Entr

y

Development
Evolution

Unknown project
dependencies

Business case
not evaluated

Vague product vision
and strategy

Key stakeholders
not integrated

Needs not
understood

Conflicts of interest;
commitments not

maintained

Unexpected
dependencies

between components

Unclear
cost/benefit

Incoherent set
of features

Rework

Delays,
overruns

Scope
creep

Wrong
content

Upstream Root Causes Tangible ProblemsEarly Project Symptoms

Strategy

Leadership

Innovation
and Change

Teamwork,
Collaboration

Marketing

Self-
Management

Economic
Thinking and

Behaviors

Technology
Understanding

Communication,
Negotiation

Maturity/
Accountability/

Trust

SWOT*/
Portfolio
Analysis

Positioning
and Value

Proposition

Strategic
Planning and
Management

Business
Case

Product and
Technology

Roadmapping

Voice of
Customer

Understanding

Phase/Gate
Process

Project
Management

Product
Definition and
Requirement

Supplier
Management

Engineering
Management

Risk
Management

Marketing
Planning

Product
Launch

Service and
Support

Management

Service,
Partner, Sales
Management

Customer
Relationship
Management

Marketing
Mix

Optimization

C
o

m
p

e
te

n
c

ie
s

P

ro
d

u
c

t
M

a
n

a
g

e
m

e
n

t

L

if
e

-C
y

c
le

 P

ro
c

e
s

s
e

s

P

h
a

s
e

* SWOT: Strengths, Weaknesses, Opportunities, and Threats

Figure 3: The Software Product Management Framework

Software Product Management

January 2009 www.stsc.hill.af.mil 19

able way. We have been working with
hundreds of product managers and
achieved a 20 percent per year reduction
of delays [1, 4]. Explanatory factors for
this positive impact of product manage-
ment include leadership and teamwork,
managing risks and uncertainty, master-
ing stakeholder needs, and accountabili-
ty towards agreed business objectives—
managed by one empowered person
across the product life cycle.

Conclusions
Using the 4+1 method means more own-
ership, leadership, and motivation in prod-
uct development teams and at their inter-
faces. Each of the practices can be applied
within a single product line if a company
is not yet prepared to introduce them
across all product lines. The practices and
overall product management framework
can be gradually introduced to product
lines or business units, thus reducing the
change impact. Practitioners in engineer-
ing, product management, and marketing
accept these practices because they yield
concrete performance improvement and
stimulate empowered project teams.

Growing an organization’s product
management discipline requires good
change management to achieve a culture
where these practices are used and imple-
mented by teams across the organization,
supported by their management, and com-
municated openly to resolve conflicts.

For improved software production and
market success, product management is
here to stay. It is not a proxy to arbitrate a
variety of conflicting interests, but rather a
key business role in an entire company
that is empowered to act as a business
owner. It provides the basis for success or
failure in the product’s development. Or,
using our initial analogy: If you do not
know which direction to take in cutting
the trees, don’t simply start just to show
progress. Real progress is what creates a
lasting user experience, and this is defined
from a product perspective—not ad-hoc
during project work in a shouting con-
test.u

Acknowledgement
This article is based on evolving the
product manager competence in differ-
ent companies worldwide. The 4+1 best
practices had been fine-tuned during
many discussions at the International
Workshop on Software Product Man-
agement (IWSPM) series.

References
1. Ebert, Christof, and Reiner Dumke.

Software Measurement. New York:

Springer, 2007.
2. Reifer, Donald J. “Profiles of Level 5

CMMI Organizations.” CrossTalk
Jan. 2007.

3. Gorchels, Linda. The Product Mana-
ger’s Handbook: The Complete Prod-
uct Management Resource. 3rd ed.
New York: McGraw-Hill, 2006.

4. Ebert, Christof. “The Impacts of
Software Product Management.” The
Journal of Systems and Software. Vol.
80, Issue 6: 850-861, June 2007.

5. IWSPM. Proc. from the International
Workshops on Software Product Man-
agement. 12 Sept. 2006, Minneapolis,
and 9 Sept. 2008, Barcelona, Spain.

6. Cooper, Roger G., et al. “Benchmark-
ing Best NPD Practices.” Research-
Technology Management. Part I: Jan.
2004: 31; Part II: May 2004: 43; Part
III: Nov. 2004: 43.

7. Davis, Alan Mark. Just Enough Re-
quirements Management. New York:
Dorset House, 2005.

8. Karlsson, Lena, et al. Challenges in
Market-Driven Requirements Engi-
neering – An Industrial Interview
Study. Proc. of 8th International
Workshop on Requirements Engineer-
ing: Foundations for Software Quality.
Essen, Germany: 37-49. 9-10 Sept.
2002 <www.tts.lth.se/Personal/bjor
nr/Papers/REFSQ02.pdf>.

About the Author

Christof Ebert, Ph.D.,
is managing director and
partner at Vector Con-
sulting Services. He is
helping clients worldwide
to improve technical

product development and to manage
organizational changes. Prior to working
at Vector, he held engineering and man-
agement positions for more than a
decade in telecommunication, IT, and
transportation. As a business consultant,
author of several books, lecturer at the
University of Stuttgart, and public
speaker, he has influenced numerous
companies with his results-driven contri-
butions.

Vector Consulting Services
Ingersheimer Straße 24
D-70499 Stuttgart
Germany
Phone: +49-711-80670-0
E-mail: christof.ebert@

vector-consulting.de

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

AUG2007 c STORIES OF CHANGE

SEPT2007 c SERVICE-ORIENTED ARCH.

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

DEC2007 c SOFTWARE SUSTAINMENT

FEB2008 c SMALL PROJECTS, BIG ISSUES

MAR2008 c THE BEGINNING

APR2008 c PROJECT TRACKING

MAY2008 c LEAN PRINCIPLES

SEPT2008 c APPLICATION SECURITY

OCT2008 c FAULT-TOLERANT SYSTEMS

NOV2008 c INTEROPERABILITY

DEC2008 c DATA AND DATA MGMT.

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil> .

20 CROSSTALK The Journal of Defense Software Engineering January 2009

In any project or organization, some per-
son, group, or station inevitably acts as

a bottleneck to the organization’s output.
This is, of course, trivially true: Once the
output of that station improves so it is not
the bottleneck, some other station be-
comes the limiting factor.

For just that reason, I will not discuss
in this article options about improving the
performance at individual stations. I will,
rather, discuss ways to improve total sys-
tem results once you have tried all you can
think of for the key stations. If you find a
way to improve the performance at the
bottleneck station, then you get to start all
over, working out where the new bottle-
neck is and how to improve total system
performance in the presence of that bot-
tleneck.

Assuming, then, that you have done all
you can to improve the output ability at
the bottleneck station, it is sometimes pos-
sible to further improve output by putting
attention on the non-bottleneck stations.

The odd part about these strategies is
that when we use the spare capacity at the
non-bottleneck stations, we will some-
times deliberately allow “rework” in order
to gain an advantage at the bottleneck sta-
tion. This is counterintuitive to most peo-
ple: Most of our industry is founded on
the notion that we should avoid rework
like the plague.

I will refer to this as “spending” effi-
ciency locally for a global gain.

Once you start looking for this, you
will see people in ordinary life doing
exactly that: Those who have a bit of
spare time find ways to help the bottle-
neck group and streamline the overall
flow. The way in which efficiency is best
spent differs according to the situation.
Taking a look at those alternatives is what
this article is about.

A Sketch of the Argument
If you optimize each independent opera-
tion in a chain of activities, you are quite
likely to not get the best total output from
the entire chain. This has been studied and
documented for years. It is, among other
things, the basis for Eliyahu M. Goldratt’s
Theory of Constraints [1, 2].

The usual advice is to find the bottle-
neck station, make it work better until it is
no longer the bottleneck, and then pay
attention to the new bottleneck station.

While that advice is, of course, correct,
it is lacking in two regards:
• For any organization, there is eventual-

ly a point when the workers and man-
agers are working at their limit. They
may not be able to hire any more peo-
ple at the bottleneck station or find
any other way to improve that group’s
productivity. This point will be reached
in all cases, whether temporarily or due
to fundamental limits.

• There might be other things other
people can do to improve the output
of the system as a whole.
Here is a simple example taken from

ordinary life: John was folding brochures
for a part-time job. Sean was doing some
other work nearby and wanted to find a
way to help, but in this situation couldn’t
help fold brochures. Sean found that he
could help by leaning over from time to
time and tilting the stack of papers so John
could pull new ones off the top faster.

The point to observe here is that Sean
didn’t do John’s work for him, but still
found a way to speed up John’s work.

The basis for these sorts of strategies
is another truism: People at the non-bot-
tleneck stations have spare capacity. By
using that spare capacity in interesting

ways, we can sometimes improve the total
system output.

Basic Alternatives
When I first went looking for suggestions
as to what people should do with their
extra time when working at non-bottle-
neck stations, I found very little.

The first suggestion, given by Goldratt
in the context of the Theory of Con-
straints, is that the people “sit on their
hands” so they don’t silently turn into bot-
tlenecks without noticing it:

During a presentation of the five
steps of focusing, I can recall Eli
saying that at non-bottlenecks peo-
ple should sit on their hands until
there is work to be done. When
there is work to be done, then they
should work as fast as they can and
then return to sitting on their
hands. But this act of subordina-
tion is extremely difficult as it goes
against common practice of maxi-
mizing the utilization of every
resource, hence the new rules,
“Utilization and Activation are not
synonymous” and “The level of
utilization of a non-bottleneck is
not determined by its own poten-
tial but by some other constraint in
the system.” [3]

Goldratt also said:

... we have to face the fact that this
conclusion means that under no
circumstances should we release
materials just to supply work to
workers ... the worker is not run-
ning the machine. He is standing
idle. [4]

The Agile and Lean manufacturing
communities do one better [5, 6]. They
cross-train people at adjacent stations so
that if one of them becomes overloaded,
the neighbor can do some of his work until
the bottleneck moves. These two sugges-
tions—sit idle and do some of the work of
the bottleneck station—are good but not
always applicable, appropriate, or optimal.

“Spending” Efficiency to Go Faster
Dr. Alistair Cockburn
Humans and Technology

Have you ever been on a project where some person or group is holding up the works? They are called the “bottleneck” sta-
tion, and here are some usual and unusual strategies for improving output in the presence of various bottlenecks.

Software Engineering Technology

“Those who have a bit
of spare time find ways
to help the bottleneck
group and streamline

the overall flow.The way
in which efficiency is best
spent differs according to

the situation.”

“Spending” Efficiency to Go Faster

January 2009 www.stsc.hill.af.mil 21

I will develop two more strategies in the
following sections:
1. Simplify the work of the bottleneck sta-

tion (as with tilting the stack of papers).
2. Let non-bottleneck people rework their

ideas to reduce future rework or speed
decisions at the bottleneck station.
The second of these is the least obvi-

ous and therefore most interesting. I’ll illus-
trate both with case studies from software
development projects.

Simplify the Work of Others
The first strategy is based on the company
eBucks, a spin-off from a larger bank to
create online rewards systems.

The eBucks case has been described in
some detail in [7]. Here, I only present
details relevant to the current topic: what
to do at non-bottleneck stations. I’ll break
the story into three parts:
1. Organizational structure.
2. Development methodology.
3. Changed strategy.

Organizational Structure
eBucks had about 50 employees at the
time, with three programmers who knew
the domain and technology well and about
16 programmers fresh from college who
were new to both the technology and the
business. More such programmers were
being hired at the time.

There were four business experts and
two expert IT analysts who created and
documented new initiatives for the pro-
gramming team to develop.

Everyone sat within a few dozen steps
of each other, in accordance with Agile
principles [7]. The company released any
new system features they had to the Web
every two weeks. The requirements
evolved in parallel with development while
the programmers were programming.

The company was gaining market
dominance in part because they deployed
new functionality to the public faster than
their competitors could match.

Development Methodology
The four market specialists, in dialogue
with their external contacts and with the
help of the two experienced IT analysts,
would draft function requests (initiatives)
for the development group to implement.

At the time, there were about 70 initia-
tives in the queue. Given the proximity of
seating and the fact that they were deploy-
ing to the Web every other week, the most
obvious strategy to consider would be to
increase verbal communication between
the analysts and the programmers, as is
recommended in the standard Agile litera-
ture [7].

Closer investigation indicated that
this would be a mistake. The problem
was that the programmers were over-
loaded with requests. With four times as
many initiatives as programmers, each
programmer was working on between
four and six initiatives at one time. The
programmers were mostly inexperienced,
fresh from school, and did not yet under-
stand the problem domain very well.
Because of their newness and because of
the wide range of assignments in play at
any one time, the programmers could not
keep the details of their assignments in
their heads.

Changed Strategy
The first change, of course, was to reduce
the number of initiatives in play, so that
each programmer was working on one (or
at most two) initiatives in any one week.
This was still not enough, given their new-
ness to the domain and the enormous
backlog of initiatives they were facing.

In the context of this article, the pro-
grammers were quite severely the bottle-
neck station; adding more programmers
wouldn’t help, nor could the existing ones
program faster. The only place found to
improve the output of the programmers
was to ensure that they were not doing
accidental rework due to forgetting what the
domain rules were, or spending time
doing domain research when other people
were available to do that. The goal was to
keep the programmers programming use-
fully.

Consequently, we went against the
standard advice of the Agile literature and,
rather than using verbal communication to
pass along the evolving requirements, we
agreed that the market specialists and

business analysts would write down for
the programmers fairly detailed use cases,
business rules, and data descriptions.

The analysts then walked the program-
mers through the text they had written
and left the text for the programmers to
refer to as they worked.

The result was that the programmers
could work in an uninterrupted, heads down
mode for most of the day, instead of stop-
ping to ask questions or do research.

Lest this seem like the natural, default,
or standard solution, it should be reiterat-
ed that the reference Agile material on
Crystal [7], Extreme Programming [8],
and Scrum [9] all recommend reducing
written material and increasing verbal
material.

In the next project, we did indeed
reduce the written material given to the
programmers; in that project, however,
the programmers were not the bottleneck.

Rework Strategically
The second strategy is based on a medi-
um-sized IT project I call Winifred. The
project was a success in the following
sense: The team delivered the contracted
functionality on time, in three-month
increments; the system solved the prob-
lem that management was concerned
about; the users utilized it as it rolled out
each quarter; and the system is still in
active use and maintenance 10 years later.
Project Winifred has been described in
some detail in [10]. Here, I only present
details relevant to the current topic: what
to do at non-bottleneck stations. I’ll break
the story into the same three parts as for
eBucks.

Organizational Structure
The project was fixed-scope (240 use
cases), fixed-price ($15 million), and fixed
time (18 months), using several technolo-
gies: COBOL, Smalltalk, and relational
databases for the production data. It was
staffed with 24 programmers in a total
team of 45 people (at its peak). It was
delivered incrementally to the user base
every three months.

The project used technologies in an
architecture common in the 1990s: A
Smalltalk client on a PC was connected to
a server running a relational database that
was connected to the company’s main-
frame system which ran programs written
in COBOL. All three technologies—
COBOL on the mainframe, relational
database on the server, and object-orient-
ed code in Smalltalk on the client’s PC—
were within the project.

The contractors sat on the same floor
and worked closely with the contracting

“The problem was
that the programmers
were overloaded with

requests.With four times
as many initiatives as
programmers, each
programmer was

working on between
four and six initiatives

at one time.”

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering January 2009

company’s employees. Programmers sat in
two or three team rooms; the business
analysts had offices several dozen steps
away.

The agreement between companies
allowed the users to change their minds
about what they wanted within each three-
month development period. The limit put
on this was that within the first six or
seven weeks of the 13-week period, the
users could change any requirement in any
way and could refine their requirements
up to week eight or nine. Because testing
and deployment preparation work took
four to five weeks, there was very little
time between when the last requirements
changed and when the system was given
to the production team.

Two or three Smalltalk programmers
were attached to each business analyst in a
function team.

The difficulty was that there were only
two database analysts (DBAs) for all four
function teams. The DBAs quickly
became the bottleneck station because
they couldn’t revise the database fast
enough to match the requirements and
design changes.

Development Methodology
A detailed description of the methodolo-

gy can be found in [10]. What is impor-
tant here are the linkages between the
business analysts (BAs) and the program-
mers, and between the programmers and
the DBAs.

The BAs met with user representa-
tives each week to discuss the current
release’s requirements and to show the
progress being made. The BAs docu-
mented their meetings with the users only
for tracking purposes; they conveyed
detailed information to the programmers
verbally as needed, daily and after each
meeting. Because of the high quality of
verbal communication, the BAs were
saved from having to revise detailed
requirements documents with the fre-
quently changing information.

The programmers attached to each BA
changed the domain model as needed
from week to week, to keep up with the
requirements changes, and also to
improve the design.

It soon became clear that the DBAs
could not keep up with those changes.

Changed Strategy
The strategies we considered might be
enumerated as follows:
1. Wait until requirements settle.
2. Get rid of some programmers.

3. Hire more DBAs.
4. Make the DBAs keep up with the pro-

grammers’ changes.
5. Have the programmers stop making

changes to their design.
6. Let the programmers create trial

designs.
The first was not allowed under the

terms of the agreement; the second would
not speed the project; the third, for rea-
sons of domain knowledge and corporate
information security, was not allowed; the
fourth was not possible in practice; and
the fifth would produce an inferior design.
That left the least obvious sixth choice.

Since there were many more program-
mers than DBAs (and possibly because
Smalltalk is so malleable an environment),
the programmers had the capacity to
experiment and improve the characteris-
tics of the domain design without impact-
ing the database design schedule. Allowing
them to do this could end up speeding the
database design work for the simple rea-
son that there would be less design rework
later.

Consequently, the programmers did
not give the domain model over for data-
base implementation until they had tried
several iterations of their design, could
assert that it was “relatively stable,” and
had passed it through a design review with
domain experts and the two DBAs.

In terms of what to do with excess
capacity at a non-bottleneck station, there
is a strategy different from sitting idle,
doing the work of the bottleneck, or sim-
plifying the work at the bottleneck; it is to
use the excess capacity to rework the ideas
to get them more stable so that less rework
is needed later at the bottleneck station.

Normally, rework is considered “waste”
and minimized, but here we see it used in a
strategic manner.

Analysis
Four strategies have been named so far for
what people might do at a non-bottleneck
station:
1. Sit idle.
2. Do the work of the bottleneck station.
3. Simplify the work at the bottleneck

station.
4. Rework material to reduce future re-

work required at the bottleneck station.
In each of these, the efficiency of the

non-bottleneck station is lowered, or
“spent.” This is what I meant in the title,
about “spending” efficiency to go faster.

The ways in which the efficiency
should be spent is an interesting and
meaningful topic for any team, and should
be considered deliberately and strategical-
ly for the situation at hand.

S
ta
bi
lit
y

Time

Requirements

Program
Design

Database
Design

Figure 1: Project Winifred’s Stations Triggered Differently Based on the Stability of the Upstream
Material

“Spending” Efficiency to Go Faster

January 2009 www.stsc.hill.af.mil 23

Rework as a Deliberate Strategy
The rework strategy is the least obvious
strategy and deserves some more analy-
sis. To understand its use in Project
Winifred, consider the growing stability
of the material at the three stations. At
the start of each cycle, the requirements
were unstable. They became more stable
over the first eight weeks of each three-
month cycle as they also became more
complete.

The domain model was also unstable
at the start of each cycle. It became also
more stable and complete over time, but
only had to reach the top level during the
testing period (that is, around week 12 of
the cycle). The database design had to
reach the point of being stable and com-
plete at the same time as the program.
Figure 1 (adapted from [7]) shows how
stability grew over time for requirements,
program design, and database design.

Recognizing that the programmers
had time to rework their designs and that
the DBAs really only had one good shot at
their design, it was arranged for the pro-
grammers to start their work from rela-
tively less complete and stable input, while
the DBAs would start their work from rel-
atively more stable input.

The moment of transfer is shown in
Figure 1 with the vertical arrow from the
upstream station’s material down to the
downstream station’s material. It was
important that the people on the respec-
tive teams traded information continuous-
ly once the transfer had occurred, since
the upstream material was changing while
the downstream people were working
from it.

The strategy of allowing rework is sen-
sitive to the placement of the points of
transfer shown in the figure. The fact that
the DBAs needed stable information is
reflected in the high position of the trans-
fer point: They didn’t have time to do
rework and therefore they needed stable
information. The fact that the program-
mers did have time to do rework is reflect-
ed in the low position of the transfer
point and the longer time allocated for
program design: They started sooner and
reworked more.

If the programmers hadn’t had time to
revise their domain model, this would have
been a poor strategy—the exact point I am
trying to make with this analysis.

Downstream vs. Upstream Rework
In Project Winifred, it was the upstream
station that had the extra capacity. The
strategy we used was for those people to
rework their design to improve its quality
and to stabilize it before handing it on to

the constrained downstream station.
Suppose, however, that it is the down-

stream station that has the extra capacity.
This might happen, for example, when the
marketing team is the bottleneck and can’t
decide which of several alternatives is
preferable. Here, the downstream team
might use their extra capacity to create
several designs for the upstream people to
choose from. The unused design would
simply get discarded, another example of
useful waste.

It is an interesting exercise to imagine
the bottleneck station being at different
places in the work stream, and working
out what a useful rework strategy might be
for the non-bottleneck stations.

Summary
Two software development cases and how
they made different use of the extra
capacity of their non-bottleneck resources
were discussed (people whose work was
not the speed-limiting factor in the overall
output of the organization).

In the first case, eBucks, the non-bot-
tleneck people did extra work to simplify
the work of the people at the bottleneck
stations.

In the second case, Project Winifred,
the non-bottleneck people performed
strategic rework in order to reduce the
later rework of the bottleneck group.

In a thought experiment, we saw how
a downstream team might create multiple
designs for an upstream group to choose
from.

When these strategies are added to the
more commonly known ones—of having
the non-bottleneck people sit idle or do
the work of the bottleneck people—there
are five strategies to choose from for how
to make use of the “excess efficiency”
available at non-bottleneck stations:
1. Have them sit idle.
2. Have them do the work of the bottle-

neck station.
3. Have them simplify the work at the

bottleneck station.
4. Have them rework material to reduce

future rework required at the bottle-
neck station.

5. Have them create multiple alternatives
for the bottleneck station to choose
from.
For each of these, the efficiency of the

non-bottleneck station is strategically low-
ered; that is, the efficiency is “deliberately
spent” in a particular way to gain an over-
all advantage in system output. The ways
in which efficiency should be spent differs
according to situation.

The examples in this article were all

taken from software development. It
should be clear that these ideas apply to
organizations and projects in general.u

References
1. Goldratt, Eliyahu M., and Jeff Cox.

The Goal: A Process of Ongoing Im-
provement. Great Barrington, MA:
North River Press, 2004.

2. Goldratt, Eliyahu M. Theory of Con-
straints. Great Barrington, MA: North
River Press, 1999.

3. Bowles, Jim. From a posting on the
theory-of-constraints experts mailing
list. No URL available.

4. Goldratt, Eliyahu M., and Robert Fox.
The Race. Great Barrington, MA:
North River Press, 1986.

5. Reinertsen, Donald. Managing the
Design Factory. The Free Press, 1997.

6. Personal discussion with Donald
Reinertsen, Jan. 2005.

7. Cockburn, Alistair. Agile Software De-
velopment: The Cooperative Game.
2nd ed. Addison-Wesley, 2006.

8. Beck, Kent. Extreme Programming
Explained: Embrace Change. 2nd ed.
Addison-Wesley, 2005.

9. Schwaber, Ken, and Mike Beedle.
Agile Software Development With
Scrum. Upper Saddle River, NJ:
Prentice-Hall, 2002.

10. Cockburn, Alistair. Surviving Object-
Oriented Projects. Addison-Wesley
Professional, 1998.

About the Author

Alistair Cockburn, Ph.D.,
is an expert on object-
oriented (OO) design,
software development
methodologies, use cases,
and project management.

He is the author of “Agile Software
Development,” “Writing Effective Use
Cases,” and “Surviving OO Projects,”
and was one of the authors of the “Agile
Development Manifesto.” He defined an
early Agile methodology for the IBM
Consulting Group, served as special
advisor to the Central Bank of Norway,
and has worked for companies in several
countries. More can be found online at
<http://alistair.cockburn.us>.

1814 East Fort Douglas CIR
Salt Lake City, UT 84103
Phone: (801) 582-3162
E-mail: acockburn@aol.com

24 CROSSTALK The Journal of Defense Software Engineering January 2009

There are three major elements
involved in SPI initiatives: SPI

appraisal, process definition, and process
deployment [1]. The SPI appraisal con-
sumes a larger percent of the budget and
resources, as it requires money to hire lead
appraisers, time away from work for staff
to be interviewed, and time away from
work for the internal appraisal team.
Process defining requires model knowl-
edge, process definition knowledge/skills,
and knowledge of the organization/com-
pany. Many organizations, however, do
not have the model knowledge, the
process definition knowledge, or the skills.
Often, deployment is not only multi-pro-
ject, but multi-site and multi-customer
type. The whole SPI initiative is a long-
term approach and it takes time to fully
implement.

A Software Engineering Institute
(SEI) report shows the number of
months (see Figure 1) required to move
from one maturity level of CMMI® to the
next [2]. The SPI approach is often con-
sidered as an expensive approach for
many organizations [3] because, in order
to fully implement an SPI initiative, an
organization needs to invest enough
resources for a long time. This problem is
exacerbated if the SPI initiative does not
achieve the desired results. Even with the
large advances in SPI approaches, the SPI

initiatives failure rate is very high (i.e., 70
percent) [4]. This is one of the reasons
that many organizations are reluctant to
embark on a long path of systematic
process improvement.

Thorough literature review revealed
that many standards and models exist for
SPI, but little attention has been paid to
their effective implementation. The chaot-
ic implementation process is the most
common cause of SPI implementation
failure [5]. Attention to a defined SPI
implementation process is essential for the
success of any SPI initiative.

This article presents the empirical
findings of what can undermine the
implementation of SPI initiatives. To
focus this study, I investigated the follow-
ing research questions:
• What barriers can undermine the SPI-

implementing initiatives?
• How can one avoid these barriers?

The objective of addressing these
research questions is to provide advice to
SPI managers and practitioners on what
and how to address CBs when developing
SPI implementation initiatives.

Research Methodology
This study uses data from interviews with
34 Australian SPI practitioners (15 per-
cent of the requested participants). The
target population in this research was

those software practitioners who have
participated in SPI implementation initia-
tives. The invitation letter included a brief
description of the research project and
the nature of the commitment required.
In return, I offered to make the research
findings available to the participating
practitioners.

Software practitioners have cited those
barriers that have undermined SPI imple-
mentation initiatives within their organiza-
tions. Based on their SPI implementation
experiences, the practitioners have also
suggested guidelines regarding how to
avoid SPI implementation barriers. It is
worth mentioning that the data was col-
lected from practitioners who were
involved in tackling real SPI implementa-
tion issues, on a daily basis, in their respec-
tive organizations.

Interviews were conducted with three
groups of practitioners:
• The first group was made up of

designers/testers/programmers/ana-
lysts.

• The second group was made up of
team leaders/project managers.

• The third group was made up of
senior managers/directors.
All the interview transcripts were read

to identify the major themes of CBs.
These themes were noted and compared
to the notes made during the interviews in
order to reassure that the transcripts being
analyzed are indeed a true reflection of
the discussion in the interviews. This two-
step process also verifies that the tran-
scription process has not changed the
original data generated in the interviews.
Different themes were grouped together
under one category. For example, poor
response (a user unwilling to be involved,
etc.) were grouped together under the CB
category lack of support. Each category rep-
resents a CB for the implementation of
SPI initiatives.

In addition to interviews, I have ana-
lyzed published experience reports, case
studies, and articles in order to identify
factors that can play a negative role in the
implementation of SPI programs. Each

Software Process Improvement Implementation:
Avoiding Critical Barriers

This article seeks to identify perceptions and experiences of practitioners about critical barriers (CBs) that can undermine the
implementation of Software Process Improvement (SPI) programs. The objective of this study is to summarize CBs and pro-
vide guidelines about how to avoid them. The results of this article provide advice to SPI managers and practitioners on what
and how to address CBs when developing SPI implementation initiatives.

Dr. Mahmood Niazi
Keele University

 19 months

19 months

24 months

13 months
Quantitatively

Managed

Initial

Managed

Defined

Optimizing

Figure 1: Number of Months Required to Move Between CMMI Maturity Levels

Software Process Improvement Implementation: Avoiding Critical Barriers

January 2009 www.stsc.hill.af.mil 25

paper was reviewed carefully and a list of
barriers was generated.

There were three categories of papers.
The first category included papers in
which the authors have described their SPI
implementation experiences with lessons
learned (i.e., why their SPI implementation
program was not successful, etc.). It was
fairly easy to identify SPI barriers because
often authors provided a summary of bar-
riers in the lessons learned. The second
category included papers in which SPI
implementation was discussed but authors
did not provide any summary of barriers.
In this case, I have had to read each paper
carefully to identify the SPI barriers. The
third category included a few papers that I
analyzed where the results of empirical
studies were described.

In order to reduce researcher bias, I
have conducted inter-rater reliability eval-
uation during this process. Three research
papers were selected at random and a col-
league, who was not familiar with the
issues being discussed, was asked to iden-
tify SPI barriers that appeared in the
papers. The results were compared with
previous results and no great disagree-
ments were found.

For analyzing the data, I used frequen-
cy analysis, which is usually the most com-
monly used approach for similar studies
by other researchers [6]. The presentation
of data along with their respective fre-
quencies is an effective mechanism for
comparing and contrasting within or
across groups of variables. In order to
analyze the CBs, I recorded the occur-
rence of a CB in each interview transcript
and research article and calculated the rel-
ative importance of each barrier.

Findings
Seven CBs were identified that can under-
mine SPI implementation initiatives: inex-
perienced staff, lack of defined SPI imple-
mentation methodology, lack of SPI aware-
ness, lack of support, lack of resources,
organizational politics, and time pressure.

In the following section, these seven
CBs are described. For each, guidelines are
provided, suggesting how to avoid these
CBs.

Inexperienced Staff
In the SPI literature, many authors have
described inexperienced staff as a barrier
for SPI:
• Kautz and Nielsen describe why

implementation of SPI was not suc-
cessful in one company: “ ... the staff
and technical director had no prior
experience with SPI and its potential
benefits” [7].

• Moitra describes the problems and dif-
ficulties of managing change for SPI
and identifies inexperienced staff as
one of the barriers for SPI: “the qual-
ity and process improvement people
are often quite theoretical—they
themselves do not understand quite
well the existing software development
processes and the context in which
they are used” [8].
Software practitioners said in the inter-

views that the experienced staff should be
involved in SPI initiative because they
have detailed knowledge of, and first-hand
experience with, SPI implementation.
With experienced staff, less rework of the
documentation items is required and real

issues can be resolved. The practitioners
said that SPI initiatives can only be suc-
cessful if staff members have a thorough
understanding of the entire SPI process
and related business. For inexperienced
staff, practitioners emphasized training in
SPI skills in order to achieve mastery of
its use. This involves equipping the practi-
tioners with the knowledge of the critical
technologies (for example, how to mea-
sure a process) required for SPI initiatives.
The overall objective of this training
should be to transfer knowledge to inex-
perienced staff of SPI activities and inter-
related business activities and objectives.

The following guidelines were suggest-
ed by the practitioners to avoid this barrier:
1. People should be selected for SPI

activities who have a track record of
different SPI projects.

2. The organization should develop a
written training policy for SPI to meet
its training needs.

3. Responsibilities should be assigned to
each staff member regarding SPI
implementation activities (e.g., process
design, process testing, and process
deployment).

4. A mechanism should be established to
monitor the SPI progress of each staff
member (e.g., staff members are meet-
ing the deadlines).

5. A mechanism should be established to
collect and analyze the feedback data
from each staff member and to extract
the main lessons learned (e.g., data
generated during process testing and
results of pilot implementation).

Lack of Defined SPI Implementation
Methodology
Practitioners stressed the need to design
an implementation methodology that
contains an SPI implementation plan as
well as SPI activities, practices, responsi-
bilities, and procedures to be used during
the implementation process. Often, the
SPI projects have no specified require-
ments, project plan, or schedule [9]. It was
recommended by the practitioners to treat
SPI as a real project that must be managed
like any other project.

Lack of defined SPI implementation
methodology has emerged as a CB for
successful SPI implementation. This is
because little attention has been paid to
the creation of an effective SPI imple-
mentation methodology. Studies show
that 67 percent of SPI managers want
guidance on how to implement SPI activ-
ities, rather than on what SPI activities to
actually implement [10].

The following guidelines were suggest-
ed by the practitioners in order to avoid
this barrier:
1. SPI implementation methodology

should be developed using current
technologies (e.g., software tools for
planning, tracking, and reporting pro-
jects).

2. SPI implementation methodology
should be tried and tested in pilot pro-
jects.

3. Staff members should be satisfied
with the performance of the method-
ology in the pilot projects.

4. Training should be provided for devel-
oping the skills and knowledge needed
to successfully use a methodology.

5. Work should be done to continuously
improve a methodology with the aim
of using it in the whole organization.

“Seven CBs were
identified that can

undermine SPI
implementation

initiatives: inexperienced
staff, lack of defined SPI

implementation
methodology, lack of SPI

awareness, lack of
support, lack of

resources, organizational
politics, and

time pressure.”

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering January 2009

Lack of SPI Awareness
Practitioners felt the need for awareness
of SPI programs (i.e., return on invest-
ment and impact) in order to fully under-
stand the benefits of SPI. Practitioners
said that since SPI implementation is the
process of adoption of new organiza-
tional practices, it is very important to
promote SPI awareness activities and
share knowledge among different stake-
holders. In addition, SPI is an expensive
and long-term approach and it takes a
long time to realize the real benefits.
Hence, in order to get the support of
management and practitioners and to
successfully continue SPI initiatives, it is
extremely important to provide sufficient
awareness at the very beginning. SPI
implementation is not as beneficial with-
out sufficient awareness of its benefits.
With this in mind, practitioners suggest-
ed involving all of the staff members in
these awareness programs.

The following guidelines were suggest-
ed by the practitioners in order to avoid
this barrier:
1. The benefits of SPI should be promot-

ed among the staff members of the
organization before implementation.

2. Higher management should be aware
of the investment required and long-
term benefits of the approach before
implementation.

3. Staff members should be aware of
their roles and responsibilities (e.g.,
through training and coaching) during
the implementation of SPI within
their unit of work.

4. Planning should be done to organize
and continue SPI awareness events
within the organization.

5. Planning should be done to make the
SPI a part of the organization’s culture.

Lack of Support
Lack of support is one of the barriers
that many practitioners think can under-
mine SPI implementation initiatives.
Often, SPI initiatives are not treated as
real projects, get low priority, and are eas-
ily replaced. As well, management often
doesn’t support SPI because they do not
understand how SPI initiatives can help in
their daily work. The practitioners
stressed the need to provide sufficient
support for SPI initiatives.

The following guidelines were suggest-
ed by the practitioners in order to avoid
this barrier:
1. Management should show strong lead-

ership and support for SPI.
2. Management should be committed to

provide all of the required resources.
3. A procedure should be established to

facilitate staff members during imple-
mentation.

4. Staff members and higher manage-
ment should be aware of the benefits
of implementation.

5. A mechanism should be established to
monitor the SPI progress of each staff
member.

Lack of Resources
Management often agrees to SPI without
sufficient knowledge of the investment
required. In some organizations, manage-
ment assumes that an SPI initiative will
occur with very little investment. In oth-
ers, management does not consider an SPI
initiative as a real project and hesitate to
allocate resources.

In addition to the findings from the 34
interviews, the following studies have
identified lack of resources as one of the
barriers for SPI implementation:
• Florence [11] discusses the lessons

learned in unsuccessfully attempting
(but not getting) CMM Level 4 at The
MITRE Corporation. He states that
they achieved CMM Level 3 because
sufficient resources were provided, but
failed to achieve Level 4 because suffi-
cient resources were not provided.

• Kautz and Nielsen describe why im-
plementation of SPI was not success-
ful because “ ... the project managers
were hesitant to use resources from
their own projects on any improve-
ment activity” [7].

• In the experience of Oerlikon Aero-
space, Laporte and Trudel [12] de-
scribe five elements for successful
implementation of SPI and state that it
is important to estimate and provide

resources. Otherwise, frustration will
end the organization’s readiness to
adopt the SPI program.
The following guidelines were suggest-

ed by the practitioners in order to avoid
this barrier:
1. Planning should be done to provide all

the required resources (funds, tools,
and people) for SPI implementation
(e.g., a typical project management
activity in which a project manager
does cost estimation and allocates
required resources for a project).

2. Staff members should be allocated
time for SPI efforts.

3. Staff members should agree to the
allocated time (i.e., extra time should
be allocated for SPI activities).

4. A procedure should be established to
avoid time pressure (staff members hav-
ing very little time to complete their
tasks).

5. A mechanism should be established so
that SPI will not get in the way of day-
to-day work (e.g., SPI must be consid-
ered as a real project and software
practitioners must not be expected to
do SPI in addition to their daily soft-
ware development activities).

Organizational Politics
Many practitioners argued that organiza-
tional politics is one of the major barriers
in SPI implementation. This is because the
SPI is considered a change in the organi-
zation and often people resist this change.

Organizations are made up of groups
and individuals who have differing values,
goals, and interests. The SPI initiative may
fit into one group’s goals but not into
another’s. There are many factors that can
trigger organizational politics, such as real-
location of resources, promotion oppor-
tunities, low trust, time pressures, and role
ambiguity.

There are several studies that describe
organizational politics as a barrier for SPI
implementation. For example, Moitra
describes the problems and difficulties of
managing change for SPI and identifies
organizational politics as one of the barri-
ers for SPI: “ ... politics in organizations is
probably one of the principal reasons why
change management efforts for process
improvement initiatives fail” [8]. The writ-
ers of [13] conducted a study of 14 com-
panies, investigating some of the impor-
tant success factors and barriers for SPI;
they identified organizational politics as
one of the barriers for SPI.

The following guidelines were suggest-
ed by the practitioners in order to avoid
this barrier:
1. Management and staff members

“In some organizations,
management assumes
that an SPI initiative

will occur with very little
investment. In others,
management does
not consider an SPI
initiative as a real

project and hesitate
to allocate resources.”

Software Process Improvement Implementation: Avoiding Critical Barriers

January 2009 www.stsc.hill.af.mil 27

should provide strong support for SPI.
2. Planning should be done to make the

SPI a part of the organization’s culture
(e.g., awareness training).

3. The benefits of SPI should be pro-
moted among the management and
staff members of the organization.

4. All of the key stakeholders should be
involved in SPI implementation initia-
tives.

5. A conflict resolution plan should be
established.

Time Pressure
Time pressure is often in the form of
meeting project deadlines and getting the
product within budget. Practitioners
stressed the need to avoid time pressure of
staff members during SPI implementa-
tion. As discussed in the Lack of Re-
sources section, practitioners suggested
that in order to avoid time pressure, SPI
must be considered as real work and soft-
ware practitioners must not be expected to
do SPI in addition to their day-to-day soft-
ware development activities.

There are several studies that describe
time pressure as a barrier for SPI imple-
mentation. A few of the key studies
observed the following:
• In [14], time pressure is identified as

one of the obstacles to SPI: “ ... oper-
ational management feel that in the
absence of all other obstacles, lack of
time seems to be the overriding obsta-
cle to SPI success in companies.”

• Paulish and Carleton [15] describe case
studies for SPI measurement and illus-
trate time restriction as one of the SPI
implementation problems.
The following guidelines were suggest-

ed by the practitioners in order to avoid
this barrier for time pressure:
1. Staff members should be allocated

time for SPI efforts and staff mem-
bers should agree to the allocated time.

2. A procedure should be established to
avoid staff from having time pressure
(i.e., inadequate time to complete
tasks).

3. A mechanism should be established so
that SPI will not get in the way of day-
to-day work (i.e., SPI should be added
to daily activities).

4. The SPI implementation effort should
be staffed by people who indicated
interest and commitment in the effort.

5. A procedure should be established to
facilitate (e.g., to avoid time pressure)
staff members during SPI implemen-
tation.

Conclusion
The empirical study of CBs with 34 SPI

practitioners is presented in this article.
Seven CBs that can undermine the SPI
implementation effort were identified. The
identification of CBs in this study can act
as a guide for practitioners when designing
SPI implementation initiatives, making it
easier to avoid the barriers that have been
identified by SPI practitioners who are
dealing with these issues on a daily basis. It
is suggested that organizations should
address these CBs when developing SPI
implementation initiatives. This article also
provides advice to SPI managers and prac-
titioners on how to address CBs when
developing these initiatives.u

References
1. Garcia, Suzie. Preliminary Insights

Working With CMMI in Small
Organizations. Proc. of the NDIA
CMMI User’s Conference, Carnegie
Mellon University. Nov. 2003 <www.
dtic.mil/ndia/2003CMMI/Garcia.ppt>.

2. SEI. Process Maturity Profile. Pitts-
burgh: Carnegie Mellon University,
2006.

3. Leung, Hareton K.N. “Slow Change of
Information System Development
Practice.” Software Quality Journal.
Nov. 1999: Vol. 8 (3). 197-210.

4. Ngwenyama, Ojelanki K., and Peter A.
Nielsen. “Competing Values in Soft-
ware Process Improvement: An As-
sumption Analysis of CMM From an
Organizational Culture Perspective.”
IEEE Transactions on Software Engi-
neering 2003: 100-112.

5. Zahran, Sami. Software Process
Improvement: Practical Guidelines for
Business Success. Addison-Wesley,
1998.

6. Niazi, Mahmood, David Wilson, and
Didar Zowghi. “Critical Success Fac-
tors for Software Process Improve-
ment: An Empirical Study.” Software
Process Improvement and Practice
Journal 2006: 11 (2) 193-211.

7. Kautz, Karlheinz, and Peter A.
Nielsen. Implementing Software Pro-
cess Improvement: Two Cases of
Technology Transfer. Proc. of the
33rd Hawaii Conference on System
Sciences, Maui, HI. 2000: Vol. 7, 1-10.

8. Moitra, Deppendra. “Managing
Change for SPI Initiatives: A Practical
Experience-Based Approach.” Soft-
ware Process Improvement and Prac-
tice 1998: 4 (4) 199-207.

9. Stelzer, Dirk and Werner Mellis.
“Success Factors of Organizational
Change in Software Process Improve-
ment.” Software Process Improve-
ment and Practice 1999: 4 (4) 227-250.

10. Herbsleb, James D., and Dennis R.

Goldenson. A Systematic Survey of
CMM Experience and Results. Proc.
of the 18th International Conference
on Software Engineering. Berlin,
Germany, 1996: 323-330.

11. Florence, Al. “Lessons Learned in At-
tempting to Achieve Software CMM
Level 4.” CrossTalk Aug. 2001:
29-30.

12. Laporte, Claude Y., and Sylvie Trudel.
“Addressing the People Issues of Pro-
cess Improvement Activities at Oerli-
kon Aerospace.” Software Process Im-
provement and Practice 1998 (4): 187-
198.

13. El-Emam, Khaled, Pierfrancesco Fu-
saro, and Bob Smith. “Success Factors
and Barriers for Software Process
Improvement. Better Software Prac-
tice for Business Benefit: Principles
and Experience” IEEE Computer
Society 1999: 355-371.

14. Baddoo, Nathan, Tracy Hall, and Da-
vid Wilson. Implementing a People-
Focused SPI Program. Proc. of the
11th European Software Control and
Metrics Conference and The Third
SCOPE Conference on Software
Product Quality. Munich, Germany:
2000.

15. Paulish, Daniel, and Anita D. Carleton.
“Case Studies of Software Process
Improvement Measurement.” IEEE
Computer 1994: 27 (9) 50-59.

About the Author

Mahmood Niazi, Ph.D.,
is a lecturer in the School
of Computing and Math-
ematics at Keele Unive-
rsity, United Kingdom.
He is an active researcher

in the field of software engineering.
Niazi has spent more than a decade with
leading technology firms and universities
as a process analyst, senior systems ana-
lyst, project manager, research scientist,
and lecturer. He has participated in and
managed several software development
and research projects. Niazi has a doc-
torate from the department of informa-
tion technology, University of Technol-
ogy Sydney.

School of Computing
and Mathematics
Keele University
Staffs ST5 5BG
United Kingdom
E-mail: mkniazi@cs.keele.ac.uk

Twenty-odd years ago, W. Edwards
Deming despaired over the state of

American management:

The biggest problem that most any
company in the Western world faces
is not its competitors, nor the Japa-
nese. The biggest problems are self-
inflicted, created right at home by
management that are off course. [1]

As I started to write this article, a col-
league told me that management in his com-
pany is taking decisive action to improve the
skill level of employees and increase pro-
ductivity. This company certainly needs
management action to improve business
results. They haven’t shipped a significant
release in over two years, and they’ve racked
up technical debt.

The product development group seems
incapable of deciding what they should ship;
they change course every few weeks. The
result is lots of action, but no completion.

People who are doing their jobs well
don’t hear from their manager, and neither
do those who are failing. Managers com-
plain, but don’t clarify expectations, offer
feedback, or support people to improve.

The senior managers have decreed that
they will raise the overall skill level in the
organization and improve productivity. I was
intrigued to hear how they planned to
accomplish this goal ... until I heard what
action they were planning to take. They plan
to rank all of the people in the company,
with the bottom 5 percent invited to find
other employment.

Sometimes, I despair.
But sometimes I dream, because there

are moments that make me feel hopeful
about management in U.S. companies.

Evidenced-Based Management
Evidence-based management is a movement
to look at what actually works in business
rather than relying on common practice,
fads, and what everyone else happens to be
doing.

We’ve all heard about known unknowns
and unknown unknowns. But Jeffrey Pfeffer
and Robert I. Sutton focus on the so-called
knowns of business practice that ain’t so, or
are only partly so [2].

Pfeffer and Sutton examine the evidence
behind the so-called war for talent, use of
incentive pay, emphasis on strategy, and
other widely accepted business practices. In
most cases, they find that the data do not
support, or only weakly support, the efficacy
of these many common business practices.

Take incentive pay, pay-for-performance,
and related pay system schemes. Many peo-
ple in organizations believe that incentives
can fix performance problems in organiza-
tions. These systems come with cascading
goals, objectives, and rating and ranking pro-
grams aimed at motivating and rewarding
behavior that will benefit the company.

The evidence shows that incentive pay
and rating systems overestimate the impor-
tance of extrinsic rewards and underesti-
mate the damage incentive pay programs
actually do. Pay-for-performance systems
not only don’t motivate people, they de-
motivate and often drive behavior the com-
pany doesn’t want. Yet most companies have
some form of incentive pay.

My anecdotal evidence matches the data
Pfeffer and Sutton collected. One project
manager complained that even though she
received a high rating, her annual raise was a
pittance—1 percent. On the other hand, a
new employee who was still learning the
ropes (and was only marginally productive)
received a 5 percent raise.

Her manager explained the logic of
moving people quickly to the mid-range of
the salary base.

While it may sound (sort of) logical, it’s
the emotional impact that’s a problem.
“Why should I bust my butt?” the project
manager asked. “The best I can hope for is
a 1 percent raise. It feels like they don’t want
me around anymore.” Within six months,
she’d left the company for a different
employer (and a better paying job).

Evidence-based management isn’t a
quick fix, so I don’t expect to see American
management transformed overnight. It is a

mindset and includes learning and research-
ing, experimenting, and acting on evi-
dence—disciplines that are often at odds
with the image of the charismatic, action-
oriented executive. As Pfeffer and Sutton
say, “Being a ‘master of the obvious’ may
not sound exciting and won’t get you labeled
as a genius, but it can make and save your
company a lot of money” [2].

As a manager, if you’re not a master of
the obvious, the rest won’t much matter.

Evidenced-based management is out
there, and many people are reading Pfeffer
and Sutton’s book or following Sutton’s
blog. People are starting to ask questions
and take management action on the basis
of what is known—rather than what they
wish was known. I plant the seeds of evi-
dence-based management action wherever
and whenever I can, prompting observa-
tion, probing for clear thinking, and
shoring up hope with facts.

Lean for Software
Development
Deming contributed to the post-World War
II transformation of Japanese manufactur-
ing. Now, in a sweet turnabout, Americans
are examining one of the great success sto-
ries of Japanese manufacturing for lessons
we can apply in managing software develop-
ment.

Lean applies key principles that have
worked in manufacturing to software devel-
opment. The Toyota system, from which
most Lean thinking derives, has 14 princi-
ples. All of them work synergistically, with
five that are particularly heartening:
1. See the system as a whole. While func-

tional organizations tend to focus on
specialized skills and excellence at the
component level, Lean teaches managers
to see their organizations as systems of
interdependent parts. A system view
leads to improving the entire system.

2. Level out the workflow. Leveling out
the workflow involves three things. The
first job of management is to reduce
overburden. In manufacturing, overbur-
dened machines break down. In knowl-
edge work, overburdened people make

Three Encouraging Developments
in Software Management©

Esther Derby
Esther Derby Associates, Inc.

When business results aren’t what they’re supposed to be, companies often make the mistake of trying everything from forced
rankings to incentive programs. Instead of these “quick fix” methods, software development managers should consider evi-
dence-based management, as well as Lean and Agile software development techniques, for successful, long-term results.

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering January 2009

© 2009 by Esther Derby. All rights reserved.

Three Encouraging Developments in Software Management

January 2009 www.stsc.hill.af.mil 29

mistakes, fall ill, burn out. The second
job is to eliminate unevenness in the
workload by figuring out how to create a
steady flow. Finally, managers need to
eliminate waste. Anything that does not
directly add value to a product is consid-
ered waste. Table 1 (from [3]) shows the
correspondence between the seven man-
ufacturing wastes and the seven software
development wastes. Eliminating waste
also results in streamlining approval
processes, finding the lightest audit
requirements that will work, and reori-
enting budget processes to focus on cre-
ating value rather than containing costs.

3. Create a culture that supports
learning and continuous improve-
ment. The only way organizations
improve their results is through feed-
back, reflection, and problem-solving.
One way to support this is retrospec-
tives (a subject near and dear to my
heart, and described in [4]). Retro-
spectives provide a structured way for
teams and work groups to examine
their technical practices, processes, and
collaboration, look for root causes,
and plan for improvements. Retro-
spectives are a plan-do-check-act cycle.

4. Develop exceptional people and
teams. Investing in people and empow-
ering them leads to better decisions and
problem-solving. That means giving
people the contextual understanding,
skills, and authority to make decisions as
close to the work as possible.

5. Focus on the long-term. U.S. managers
are driven by short-term metrics and
financial targets, even when reaching
those targets sacrifices long-term results.
But to produce exceptional results, man-
agers need to think farther out than the
next quarter and cannot cut corners now
that will cost the company later.
There is much more to the management

philosophy that supports the Toyota
Production System1 and other Lean trans-
formations, but these strike me as the five
most critical steps to improving manage-
ment.

Agile Software Development
Agile methods reinforce key elements of
Lean. They aim to manage workflow so that
teams work at a sustainable pace—one that
they can maintain without burning out. Agile
also eliminates waste by focusing only on the
most important features, catching defects
before they escape an iteration, and reducing
documentation to the minimum (and, con-
sequently) allowing the cross-functional
development team do their work.

Agile removes the manager from day-to-
day task management, and leverages self-

organizing teams to create valuable software.
The teams manage their own work, and
improve their own practices and processes
through regular retrospectives. And with the
managers freed-up from task supervision,
they can turn their talents and energy to
removing blocks and impediments that
interfere with the team’s ability to deliver
working software.

In many organizations, team’s goals cas-
cade down from management. The team
works to meet their goals, which in turn con-
tributes to the manager meeting his or her
goals. The team is in service to the manager.
Agile breaks this dynamic by focusing the
team on building the features that have the
best return on investment. Teams don’t
serve their manager, but work towards creat-
ing value for the company.

Agile shifts the manager out of task
supervision and into enabling productivity.
Managers serve the team (and the company)
by creating an environment that will enable
the team to do their best work and by work-
ing across the organization to eliminate
waste and impediments.

Conclusion
Clearly the managers at my colleague’s
company have not yet discovered evi-
dence-based management and have not
mastered the obvious. If they had, they’d
know that forced ranking won’t solve their
problems.

They haven’t yet realized that their
organization is a system, one that is per-
fectly designed to produce the results they
are achieving. They haven’t realized that
they are punishing workers for manage-
ment problems, and that improving the
skill level of their developers is fruitless
without creating an environment where
developers can produce results.

Ah, well.
All we can do is plant the seeds, and

work with the people who realize their job
is not merely telling others what to do, but
creating organizations that allow everyone
to do their best. And these movements
may help us.

References
1. Walton, Mary. Foreword by W. Edwards

Deming. The Deming Management
Method. Perigree, 1988: xii.

2. Pfeffer, Jeffrey, and Robert I. Sutton.
Hard Facts, Dangerous Half-Truths, and
Total Nonsense: Profiting from Evi-
dence-Based Management. Boston:
Harvard Business School Press, 2006.

3. Poppendieck, Mary, and Tom Poppen-
dieck. Lean Software Development: An
Agile Toolkit. Addison Wesley, 2003.

4. Derby, Esther, and Diana Larsen. Agile
Retrospectives: Making Good Teams
Great. Pragmatic Programmers. Prag-
matic Bookshelf, 2006.

Note
1. For more information on the manage-

ment philosophy behind the Toyota
Production System, see “The Toyota
Way: 14 Management Principles from the
World’s Greatest Manufacturer,” by
Jeffrey Liker.

The Seven Wastes of Manufacturing The Seven Wastes of Software Development

Inventory

Extra Processing

Overproduction

Transportation

Waiting

Motion

Defects

Partially Done Work

Extra Processes

Extra Features

Task Switching

Waiting

Motion

Defects

Table 1: The Seven Wastes of Manufacturing and Software Development

About the Author

Esther Derby is well
known for her work in
helping teams grow to
new levels of productivi-
ty and coaching technical
people who are making

the transition to leadership roles. She is
one of the founders of the Scrum
Alliance and co-author of “Agile
Retrospectives: Making Good Teams
Great.” She has a master’s degree in
organizational leadership and more than
two decades experience in the wonderful
world of software.

Esther Derby Associates, Inc.
3620 11th AVE
Minneapolis, MN 35401
Phone: (612) 724-8114
E-mail: derby@estherderby.com

Departments

30 CROSSTALK The Journal of Defense Software Engineering January 2009

“Technology: Advancing Precision”

Conference Registration
Opens 5 January 2009

www.sstc-online.org

20-23 April 2009 - Salt Lake City, Utah

Register Now!
Visit WWW.SSTC-ONLINE.ORG to access:

 • Complete Presentation Schedule
 • Presentation Summaries
 • Speaker Biographies
 • Conference & Exhibit Registration
 • Online Lodging Reservations

 WHO SHOULD ATTEND:

• Acquisition Professionals
• Program/Project Managers
• Programmers
• Systems Developers

• Systems Engineers
• Process Engineers
• Quality and Test Engineers

Dear CrossTalk Editor,
I have been an avid reader of CrossTalk for many years, start-
ing when I worked at a telecommunications company, through my
time at a DoD contractor, and now at a supplier of Military-
Standard-1553 hardware and software. It’s one of the few publica-
tions that I take the time to read on a regular basis because it has
always provided me with ideas and tools for improving the process-
es and the products that my organizations have produced. Not only
do I read CrossTalk regularly, but I have also championed it to
my employees, who have joined me as avid readers.

I have benefitted greatly from your articles on processes, such
as CMMI, DO-178B, Lean, and Six Sigma. I worked at several
CMMI Level 5 companies and, through CrossTalk, learned the
value of good processes for producing consistent, high-quality soft-
ware. Now at a mid-sized commercial company, I needed to adapt
those heavyweight quality management systems to a more dynamic
environment, and CrossTalk has been there with relevant arti-
cles and information.

I cannot say with certainty how much money, time, or effort
that CrossTalk has saved my employers throughout the years,
but I can say that every one of them has benefitted greatly from the
ideas and information published in your magazine. I can think of
no finer compliment than to say that if I had to keep only one pub-
lication to read each month, CrossTalk would be it. My
employees and I look forward to every issue, and its articles are the
start of many great discussions. It is definitely my pleasure to share
with you the tremendous value that I place on your journal, and

hope others who value CrossTalk as much as I do will contin-
ue to share their comments.

—Robert Miller
<miller@ddc-web.com>

Dear CrossTalk Editor,
I have been a subscriber to CrossTalk since the days of paper
in the early ’90s and have been highly impressed with the quality and
timeliness of the articles provided.

While most IT journals are geared toward either marketing or
academic theory, CrossTalk is one of the very few that provide
practical, actionable information that is useful in the real world. I
especially like the fact that both individual articles and the entire
publication are available as a PDF— very useful for offline reading.
The information density stands in stark contrast to the froth that
adorns most journals.

A while ago, I was tasked with researching the current state of
service-oriented architecture, and the September 2007 issue arrived
with the entire issue devoted to the subject. I spent a week reading
vendor white papers, but it wasn’t until I read that CrossTalk
that I felt like I was gaining some traction in understanding the
state-of-the-art. I was especially gratified to learn about problems
and pitfalls to avoid—very welcome advice.

Keep up the good work and thank you and your staff for all
your efforts.

—Brian Spaulding
<brian.spaulding@pb.com>

LETTERS TO THE EDITOR

BACKTALK

January 2009 www.stsc.hill.af.mil 31

During the holidays (a.k.a. the gift-giving season), I noticed that
software engineers and my children have a lot in common.

No, I’m not going to pontificate on preadolescent behaviors, eat-
ing too many sugary snacks, or the two schools of thought based
on “giving” vs. “getting.” Oddly enough, I discovered a similarity
in the bright, shiny, childlike smiles on both children’s and engi-
neer’s faces when they receive a new toy or gadget. There’s a simi-
lar look of wonderment, intrigue, and embedded thoughts of lim-
itless playtime. And there’s the anticipation of finding new, undis-
covered toy functionality for both, whether it’s the pop-out wings
on a new Transformers action figure, or the thumbnail-sized cou-
pling transformer hidden inside a new PDA device.

Being a long-time IT manager, it feels like what Yogi Berra
called “déjà vu all over again.” In my first IT management job, I
was told by my supervisor that the way to keep IT professionals
happy was to give them big monitors and lots of computer mem-
ory. Later, she revised her statement to include the new toys com-
ing out, like desktop video conferencing and duel processors.
These new devices have really changed the agility of the workforce
and have impacted the way we live. On the other hand, these toys
have also given those of us who are still kids at heart a renewed
interest in our daily jobs.

Like me, I’m sure many “family managers” (a.k.a. moms and
dads) struggle with the pros and cons of technological toys at
home, with the cell phone probably being the most divisive. It’s
great to keep our kids in contact and safe. But the texting ... some
say it’s destroying our children’s personal interaction and spelling
skills while others say it’s speeding their processing and cognitive
abilities.

It’s just as complicated of a problem for IT professionals and
managers. Portable computing and communication devices have a
significant impact on the workforce. Here at the National Nuclear
Security Administration (NNSA), we did a formal review of
“Portable Computing and Communication Devices.” The evalua-
tion had four areas: risk management, responsible management,
agility of the workforce, and work-life balance.

Risk management is a big issue for all of us. As managers, we
need to recognize that laptops, BlackBerrys, and PDAs contain data,
sometimes just in the form of e-mail messages, other times in the
form of documents. Employees are usually careful with their devices,
but given the nature of the data, the potential risk is usually too great.
Don’t forget Murphy’s Law: Whatever can go wrong will go wrong,
and at the worst possible time, in the worst possible way. There are
articles in the newspapers every week about how these devices have
been stolen and lost with grave consequences. So the first question
is: Is it an acceptable risk (personally and professionally) to have this
device and information carried on and off-site?

The second area of concern is responsible management. It’s
the old “need vs. want” debate that we’ve all had, either with our
kids or employees … my sympathies if you’re like me, and have
had these conversations with both! Parents of the ’80s: Do you
remember the pre-dawn frenzied shopping stampedes to get our
kids a Cabbage Patch Doll? In the 21st Century, it’s electronics, and
we’ve either camped out (or seen the campers) awaiting an iPhone
or Wii game console. While we can have the “whatever it takes”
attitude when it comes to our kids or personal wants, the work-
place is a different story. With budget concerns and, yes, the pos-
sibility of the old, “so-and-so has one, so why don’t I?” complaints,

we should think carefully before purchasing. Is this device cost-
effective? Is there a real need for this to get the work done outside
of the office or is it just a convenience or a status symbol?

There is no question that portable computing devices have
greatly enhanced the agility of the workforce. It has never been
easier to work off-site without losing productivity and communi-
cations capability.

We have all become experts at multi-tasking. Who hasn’t sat in
a meeting, pretending to “take notes” while really answering e-mail
messages or reviewing a document. It begs the question: How
much are we missing, and what risk are we creating, by multi-task-
ing, and not giving our full attention to the primary task? Let me
ask the parents out there: What happens when your kids don’t do
their requisite chores or their grades slip? The toys, or those elec-
tronic devices, are the first things to go. If only the workplace was
that easy!

We wouldn’t let our kids play with their toys 24/7. For adults,
it’s the accessibility of personal devices, where, actually, over-acces-
sibility becomes an issue. Only about a decade ago, we just didn’t
answer the phone (thank you, caller ID). Today, there are countless
ways to work ... and to be reached: e-mail, pager, text message, and
so on. You have to really be creative not to be “in touch,” and the
believability of “I didn’t get the message” has shrunk to near noth-
ing. Everyone needs some downtime, and the proliferation of the
electronic devices is severely cutting into it. When are you NOT
working when you have a portable device? Surprising as it may
seem, the 24/7 worker isn’t necessarily the most efficient worker.
An August 2007 article in CIO Magazine <www.cio.com/arti
cle/132551> indicated that when people work long hours over a
period of time, they actually become less effective, tend to make
more mistakes, and increase the security risks.

As IT managers, we have a responsibility to our employees as
well as to our companies to maximize the potential of everyone.
But by giving the portable devices to everyone who asks for them,
are we creating an unacceptable risk to both the company and to
the person? The answers to all of the questions I’ve posed should
drive the assignment of the devices, not just desire to have a new
toy.

— Dr. Linda R. Wilbanks
Chief Information Officer,

NNSA – Department of Energy
linda.wilbanks@nnsa.doe.gov

The Value of Toys

Can You BackTalk?

Here is your chance to make your point without your boss
censoring your writing. In addition to accepting articles that
relate to software engineering for publication in CrossTalk,
we also accept articles for the BackTalk column. These arti-
cles should provide a concise, clever, humorous, and insight-
ful perspective on the software engineering profession or
industry or a portion of it. Your BackTalk article should be
entertaining and clever or original in concept, design, or deliv-
ery, and should not exceed 750 words.

For more information on how to submit your BackTalk
article, go to <www.stsc.hill.af.mil>.

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk thanks
the above

organizations for
providing their support.

	Front Cover
	Table of Contents
	From the Sponsor
	Policies, News, and Updates
	Announcing CrossTalk’s Co-Sponsor Team for 2009
	The 2009 CrossTalk Editorial Board

	Engineering for Production
	Production Planning for a Software Product Line
	Experiences With Software Product Line Development
	Software Product Management

	Software Engineering Technology
	“Spending” Efficiency to Go Faster
	Software Process Improvement Implementation:Avoiding Critical Barriers

	Open Forum
	Three Encouraging Developmentsin Software Management©

	Web Sites
	Coming Events
	Letters to the Editor
	SSTC 2009
	BackTalk
	Back Cover

